1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00

Revert "[ThinLTO] Add summary entries for index-based WPD"

Mistaken commit of something still under review!

This reverts commit r351453.

llvm-svn: 351455
This commit is contained in:
Teresa Johnson 2019-01-17 16:05:04 +00:00
parent e47bb6d8cf
commit e8cb930dbb
14 changed files with 26 additions and 721 deletions

View File

@ -264,25 +264,10 @@ enum GlobalValueSummarySymtabCodes {
// Index-wide flags
FS_FLAGS = 20,
// Maps type identifier to summary information for that type identifier.
// Produced by the thin link (only lives in combined index).
// TYPE_ID: [typeid, kind, bitwidth, align, size, bitmask, inlinebits,
// n x (typeid, kind, name, numrba,
// numrba x (numarg, numarg x arg, kind, info, byte, bit))]
FS_TYPE_ID = 21,
// Maps type identifier to summary information for that type identifier
// computed from type metadata: the valueid of each vtable definition
// decorated with a type metadata for that identifier, and the offset from
// the corresponding type metadata.
// Exists in the per-module summary to provide information to thin link
// for index-based whole program devirtualization.
// TYPE_ID_METADATA: [typeid, n x (valueid, offset)]
FS_TYPE_ID_METADATA = 22,
// Summarizes vtable definition for use in index-based whole program
// devirtualization during the thin link.
// PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
// numrefs, numrefs x valueid,
// n x (valueid, offset)]
FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS = 23,
};
enum MetadataCodes {

View File

@ -666,12 +666,6 @@ template <> struct DenseMapInfo<FunctionSummary::ConstVCall> {
}
};
/// Pair of function ValueInfo and offset within a vtable definition
/// initializer array.
using VirtFuncOffsetPair = std::pair<ValueInfo, uint64_t>;
/// List of functions referenced by a particular vtable definition.
using VTableFuncList = std::vector<VirtFuncOffsetPair>;
/// Global variable summary information to aid decisions and
/// implementation of importing.
///
@ -679,11 +673,6 @@ using VTableFuncList = std::vector<VirtFuncOffsetPair>;
/// modified during the program run or not. This affects ThinLTO
/// internalization
class GlobalVarSummary : public GlobalValueSummary {
private:
/// For vtable definitions this holds the list of functions and
/// their corresponding offsets within the initializer array.
std::unique_ptr<VTableFuncList> VTableFuncs;
public:
struct GVarFlags {
GVarFlags(bool ReadOnly = false) : ReadOnly(ReadOnly) {}
@ -704,17 +693,6 @@ public:
GVarFlags varflags() const { return VarFlags; }
void setReadOnly(bool RO) { VarFlags.ReadOnly = RO; }
bool isReadOnly() const { return VarFlags.ReadOnly; }
void setVTableFuncs(VTableFuncList Funcs) {
assert(!VTableFuncs);
VTableFuncs = llvm::make_unique<VTableFuncList>(std::move(Funcs));
}
ArrayRef<VirtFuncOffsetPair> vTableFuncs() const {
if (VTableFuncs)
return *VTableFuncs;
return {};
}
};
struct TypeTestResolution {
@ -813,14 +791,6 @@ using GVSummaryMapTy = DenseMap<GlobalValue::GUID, GlobalValueSummary *>;
using TypeIdSummaryMapTy =
std::multimap<GlobalValue::GUID, std::pair<std::string, TypeIdSummary>>;
/// Holds information about vtable definitions decorated with type metadata:
/// the vtable definition value and its offset in the corresponding type
/// metadata.
using TypeIdOffsetGVPair = std::pair<uint64_t, ValueInfo>;
/// List of vtable definitions decorated by the same type id metadata,
/// and their corresponding offsets in the type id metadata.
using TypeIdGVInfo = std::vector<TypeIdOffsetGVPair>;
/// Class to hold module path string table and global value map,
/// and encapsulate methods for operating on them.
class ModuleSummaryIndex {
@ -833,14 +803,9 @@ private:
ModulePathStringTableTy ModulePathStringTable;
/// Mapping from type identifier GUIDs to type identifier and its summary
/// information. Produced by thin link.
/// information.
TypeIdSummaryMapTy TypeIdMap;
/// Mapping from type identifier to information about vtables decorated
/// with that type identifier's metadata. Produced by per module summary
/// analysis and consumed by thin link.
std::map<std::string, TypeIdGVInfo> TypeIdMetadataMap;
/// Mapping from original ID to GUID. If original ID can map to multiple
/// GUIDs, it will be mapped to 0.
std::map<GlobalValue::GUID, GlobalValue::GUID> OidGuidMap;
@ -1198,27 +1163,6 @@ public:
return nullptr;
}
const std::map<std::string, TypeIdGVInfo> &typeIdMetadataMap() const {
return TypeIdMetadataMap;
}
/// Return an existing or new TypeIdMetadataMap entry for \p TypeId.
/// This accessor can mutate the map and therefore should not be used in
/// the ThinLTO backends.
TypeIdGVInfo &getOrInsertTypeIdMetadataSummary(StringRef TypeId) {
return TypeIdMetadataMap[TypeId];
}
/// For the given \p TypeId, this returns either a pointer to the
/// TypeIdMetadataMap entry (if present in the summary map) or null
/// (if not present). This may be used when importing.
const TypeIdGVInfo *getTypeIdMetadataSummary(StringRef TypeId) const {
auto I = TypeIdMetadataMap.find(TypeId);
if (I == TypeIdMetadataMap.end())
return nullptr;
return &I->second;
}
/// Collect for the given module the list of functions it defines
/// (GUID -> Summary).
void collectDefinedFunctionsForModule(StringRef ModulePath,

View File

@ -406,98 +406,9 @@ static void computeFunctionSummary(ModuleSummaryIndex &Index, const Module &M,
Index.addGlobalValueSummary(F, std::move(FuncSummary));
}
/// Find function pointers referenced within the given vtable initializer
/// (or subset of an initializer) \p I. The starting offset of \p I within
/// the vtable initializer is \p StartingOffset. Any discovered function
/// pointers are added to \p VTableFuncs along with their cumulative offset
/// within the initializer.
static void findFuncPointers(const Constant *I, uint64_t StartingOffset,
const Module &M, ModuleSummaryIndex &Index,
VTableFuncList &VTableFuncs) {
// First check if this is a function pointer.
if (I->getType()->isPointerTy()) {
auto Fn = dyn_cast<Function>(I->stripPointerCasts());
// We can disregard __cxa_pure_virtual as a possible call target, as
// calls to pure virtuals are UB.
if (Fn && Fn->getName() != "__cxa_pure_virtual")
VTableFuncs.push_back(
std::make_pair(Index.getOrInsertValueInfo(Fn), StartingOffset));
return;
}
// Walk through the elements in the constant struct or array and recursively
// look for virtual function pointers.
const DataLayout &DL = M.getDataLayout();
if (auto *C = dyn_cast<ConstantStruct>(I)) {
StructType *STy = dyn_cast<StructType>(C->getType());
assert(STy);
const StructLayout *SL = DL.getStructLayout(C->getType());
for (StructType::element_iterator EB = STy->element_begin(), EI = EB,
EE = STy->element_end();
EI != EE; ++EI) {
auto Offset = SL->getElementOffset(EI - EB);
unsigned Op = SL->getElementContainingOffset(Offset);
findFuncPointers(cast<Constant>(I->getOperand(Op)),
StartingOffset + Offset, M, Index, VTableFuncs);
}
} else if (auto *C = dyn_cast<ConstantArray>(I)) {
ArrayType *ATy = C->getType();
Type *EltTy = ATy->getElementType();
uint64_t EltSize = DL.getTypeAllocSize(EltTy);
for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
findFuncPointers(cast<Constant>(I->getOperand(i)),
StartingOffset + i * EltSize, M, Index, VTableFuncs);
}
}
}
// Identify the function pointers referenced by vtable definition \p V.
static void computeVTableFuncs(ModuleSummaryIndex &Index,
const GlobalVariable &V, const Module &M,
VTableFuncList &VTableFuncs) {
if (!V.isConstant())
return;
findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index,
VTableFuncs);
#ifndef NDEBUG
// Validate that the VTableFuncs list is ordered by offset.
uint64_t PrevOffset = 0;
for (auto &P : VTableFuncs) {
// The findVFuncPointers traversal should have encountered the
// functions in offset order. We need to use ">=" since PrevOffset
// starts at 0.
assert(P.second >= PrevOffset);
PrevOffset = P.second;
}
#endif
}
/// Record vtable definition \p V for each type metadata it references.
static void recordTypeIdMetadataReferences(ModuleSummaryIndex &Index,
const GlobalVariable &V,
SmallVectorImpl<MDNode *> &Types) {
for (MDNode *Type : Types) {
auto TypeID = Type->getOperand(1).get();
uint64_t Offset =
cast<ConstantInt>(
cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
->getZExtValue();
if (auto *TypeId = dyn_cast<MDString>(TypeID))
Index.getOrInsertTypeIdMetadataSummary(TypeId->getString())
.push_back({Offset, Index.getOrInsertValueInfo(&V)});
}
}
static void computeVariableSummary(ModuleSummaryIndex &Index,
const GlobalVariable &V,
DenseSet<GlobalValue::GUID> &CantBePromoted,
const Module &M,
SmallVectorImpl<MDNode *> &Types) {
static void
computeVariableSummary(ModuleSummaryIndex &Index, const GlobalVariable &V,
DenseSet<GlobalValue::GUID> &CantBePromoted) {
SetVector<ValueInfo> RefEdges;
SmallPtrSet<const User *, 8> Visited;
bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited);
@ -505,21 +416,6 @@ static void computeVariableSummary(ModuleSummaryIndex &Index,
GlobalValueSummary::GVFlags Flags(V.getLinkage(), NonRenamableLocal,
/* Live = */ false, V.isDSOLocal());
VTableFuncList VTableFuncs;
// If splitting is not enabled, then we compute the summary information
// necessary for index-based whole program devirtualization.
if (!Index.enableSplitLTOUnit()) {
Types.clear();
V.getMetadata(LLVMContext::MD_type, Types);
if (!Types.empty()) {
// Identify the function pointers referenced by this vtable definition.
computeVTableFuncs(Index, V, M, VTableFuncs);
// Record this vtable definition for each type metadata it references.
recordTypeIdMetadataReferences(Index, V, Types);
}
}
// Don't mark variables we won't be able to internalize as read-only.
GlobalVarSummary::GVarFlags VarFlags(
!V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() &&
@ -530,8 +426,6 @@ static void computeVariableSummary(ModuleSummaryIndex &Index,
CantBePromoted.insert(V.getGUID());
if (HasBlockAddress)
GVarSummary->setNotEligibleToImport();
if (!VTableFuncs.empty())
GVarSummary->setVTableFuncs(VTableFuncs);
Index.addGlobalValueSummary(V, std::move(GVarSummary));
}
@ -674,11 +568,10 @@ ModuleSummaryIndex llvm::buildModuleSummaryIndex(
// Compute summaries for all variables defined in module, and save in the
// index.
SmallVector<MDNode *, 2> Types;
for (const GlobalVariable &G : M.globals()) {
if (G.isDeclaration())
continue;
computeVariableSummary(Index, G, CantBePromoted, M, Types);
computeVariableSummary(Index, G, CantBePromoted);
}
// Compute summaries for all aliases defined in module, and save in the

View File

@ -749,8 +749,6 @@ lltok::Kind LLLexer::LexIdentifier() {
KEYWORD(critical);
KEYWORD(relbf);
KEYWORD(variable);
KEYWORD(vTableFuncs);
KEYWORD(virtFunc);
KEYWORD(aliasee);
KEYWORD(refs);
KEYWORD(typeIdInfo);
@ -763,7 +761,6 @@ lltok::Kind LLLexer::LexIdentifier() {
KEYWORD(offset);
KEYWORD(args);
KEYWORD(typeid);
KEYWORD(typeidMetadata);
KEYWORD(summary);
KEYWORD(typeTestRes);
KEYWORD(kind);

View File

@ -822,9 +822,6 @@ bool LLParser::ParseSummaryEntry() {
case lltok::kw_typeid:
return ParseTypeIdEntry(SummaryID);
break;
case lltok::kw_typeidMetadata:
return ParseTypeIdMetadataEntry(SummaryID);
break;
default:
return Error(Lex.getLoc(), "unexpected summary kind");
}
@ -7260,90 +7257,6 @@ bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
return false;
}
static ValueInfo EmptyVI =
ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
/// TypeIdMetadataEntry
/// ::= 'typeidMetadata' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdGVInfo
/// ')'
bool LLParser::ParseTypeIdMetadataEntry(unsigned ID) {
assert(Lex.getKind() == lltok::kw_typeidMetadata);
Lex.Lex();
std::string Name;
if (ParseToken(lltok::colon, "expected ':' here") ||
ParseToken(lltok::lparen, "expected '(' here") ||
ParseToken(lltok::kw_name, "expected 'name' here") ||
ParseToken(lltok::colon, "expected ':' here") ||
ParseStringConstant(Name))
return true;
TypeIdGVInfo &TI = Index->getOrInsertTypeIdMetadataSummary(Name);
if (ParseToken(lltok::comma, "expected ',' here") ||
ParseToken(lltok::kw_summary, "expected 'summary' here") ||
ParseToken(lltok::colon, "expected ':' here") ||
ParseToken(lltok::lparen, "expected '(' here"))
return true;
IdToIndexMapType IdToIndexMap;
// Parse each call edge
do {
uint64_t Offset;
if (ParseToken(lltok::lparen, "expected '(' here") ||
ParseToken(lltok::kw_offset, "expected 'offset' here") ||
ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
ParseToken(lltok::comma, "expected ',' here"))
return true;
LocTy Loc = Lex.getLoc();
unsigned GVId;
ValueInfo VI;
if (ParseGVReference(VI, GVId))
return true;
// Keep track of the TypeIdGVInfo array index needing a forward reference.
// We will save the location of the ValueInfo needing an update, but
// can only do so once the std::vector is finalized.
if (VI == EmptyVI)
IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
TI.push_back({Offset, VI});
if (ParseToken(lltok::rparen, "expected ')' in call"))
return true;
} while (EatIfPresent(lltok::comma));
// Now that the TI vector is finalized, it is safe to save the locations
// of any forward GV references that need updating later.
for (auto I : IdToIndexMap) {
for (auto P : I.second) {
assert(TI[P.first].second == EmptyVI &&
"Forward referenced ValueInfo expected to be empty");
auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
FwdRef.first->second.push_back(
std::make_pair(&TI[P.first].second, P.second));
}
}
if (ParseToken(lltok::rparen, "expected ')' here") ||
ParseToken(lltok::rparen, "expected ')' here"))
return true;
// Check if this ID was forward referenced, and if so, update the
// corresponding GUIDs.
auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
if (FwdRefTIDs != ForwardRefTypeIds.end()) {
for (auto TIDRef : FwdRefTIDs->second) {
assert(!*TIDRef.first &&
"Forward referenced type id GUID expected to be 0");
*TIDRef.first = GlobalValue::getGUID(Name);
}
ForwardRefTypeIds.erase(FwdRefTIDs);
}
return false;
}
/// TypeTestResolution
/// ::= 'typeTestRes' ':' '(' 'kind' ':'
/// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
@ -7851,7 +7764,6 @@ bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
/*Live=*/false, /*IsLocal=*/false);
GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false);
std::vector<ValueInfo> Refs;
VTableFuncList VTableFuncs;
if (ParseToken(lltok::colon, "expected ':' here") ||
ParseToken(lltok::lparen, "expected '(' here") ||
ParseModuleReference(ModulePath) ||
@ -7860,20 +7772,10 @@ bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
ParseGVarFlags(GVarFlags))
return true;
// Parse optional fields
while (EatIfPresent(lltok::comma)) {
switch (Lex.getKind()) {
case lltok::kw_vTableFuncs:
if (ParseOptionalVTableFuncs(VTableFuncs))
return true;
break;
case lltok::kw_refs:
// Parse optional refs field
if (EatIfPresent(lltok::comma)) {
if (ParseOptionalRefs(Refs))
return true;
break;
default:
return Error(Lex.getLoc(), "expected optional variable summary field");
}
}
if (ParseToken(lltok::rparen, "expected ')' here"))
@ -7883,7 +7785,6 @@ bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
GS->setModulePath(ModulePath);
GS->setVTableFuncs(std::move(VTableFuncs));
AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
ID, std::move(GS));
@ -8101,67 +8002,6 @@ bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
return false;
}
/// OptionalVTableFuncs
/// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
/// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
assert(Lex.getKind() == lltok::kw_vTableFuncs);
Lex.Lex();
if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") |
ParseToken(lltok::lparen, "expected '(' in vTableFuncs"))
return true;
IdToIndexMapType IdToIndexMap;
// Parse each virtual function pair
do {
ValueInfo VI;
if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") ||
ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
ParseToken(lltok::colon, "expected ':'"))
return true;
LocTy Loc = Lex.getLoc();
unsigned GVId;
if (ParseGVReference(VI, GVId))
return true;
uint64_t Offset;
if (ParseToken(lltok::comma, "expected comma") ||
ParseToken(lltok::kw_offset, "expected offset") ||
ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset))
return true;
// Keep track of the VTableFuncs array index needing a forward reference.
// We will save the location of the ValueInfo needing an update, but
// can only do so once the std::vector is finalized.
if (VI == EmptyVI)
IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
VTableFuncs.push_back(std::make_pair(VI, Offset));
if (ParseToken(lltok::rparen, "expected ')' in vTableFunc"))
return true;
} while (EatIfPresent(lltok::comma));
// Now that the VTableFuncs vector is finalized, it is safe to save the
// locations of any forward GV references that need updating later.
for (auto I : IdToIndexMap) {
for (auto P : I.second) {
assert(VTableFuncs[P.first].first == EmptyVI &&
"Forward referenced ValueInfo expected to be empty");
auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
FwdRef.first->second.push_back(
std::make_pair(&VTableFuncs[P.first].first, P.second));
}
}
if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs"))
return true;
return false;
}
/// OptionalRefs
/// := 'refs' ':' '(' GVReference [',' GVReference]* ')'
bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {

View File

@ -369,11 +369,9 @@ namespace llvm {
IdToIndexMapType &IdToIndexMap, unsigned Index);
bool ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
IdToIndexMapType &IdToIndexMap, unsigned Index);
bool ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs);
bool ParseOptionalRefs(std::vector<ValueInfo> &Refs);
bool ParseTypeIdEntry(unsigned ID);
bool ParseTypeIdSummary(TypeIdSummary &TIS);
bool ParseTypeIdMetadataEntry(unsigned ID);
bool ParseTypeTestResolution(TypeTestResolution &TTRes);
bool ParseOptionalWpdResolutions(
std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap);

View File

@ -379,8 +379,6 @@ enum Kind {
kw_critical,
kw_relbf,
kw_variable,
kw_vTableFuncs,
kw_virtFunc,
kw_aliasee,
kw_refs,
kw_typeIdInfo,
@ -393,7 +391,6 @@ enum Kind {
kw_offset,
kw_args,
kw_typeid,
kw_typeidMetadata,
kw_summary,
kw_typeTestRes,
kw_kind,

View File

@ -748,9 +748,6 @@ private:
bool HasRelBF);
Error parseEntireSummary(unsigned ID);
Error parseModuleStringTable();
void parseTypeIdMetadataSummaryRecord(ArrayRef<uint64_t> Record);
void parseTypeIdGVInfo(ArrayRef<uint64_t> Record, size_t &Slot,
TypeIdGVInfo &TypeId);
std::pair<ValueInfo, GlobalValue::GUID>
getValueInfoFromValueId(unsigned ValueId);
@ -5227,24 +5224,6 @@ static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
}
void ModuleSummaryIndexBitcodeReader::parseTypeIdGVInfo(
ArrayRef<uint64_t> Record, size_t &Slot, TypeIdGVInfo &TypeId) {
uint64_t Offset = Record[Slot++];
ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
TypeId.push_back({Offset, Callee});
}
void ModuleSummaryIndexBitcodeReader::parseTypeIdMetadataSummaryRecord(
ArrayRef<uint64_t> Record) {
size_t Slot = 0;
TypeIdGVInfo &TypeId = TheIndex.getOrInsertTypeIdMetadataSummary(
{Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
Slot += 2;
while (Slot < Record.size())
parseTypeIdGVInfo(Record, Slot, TypeId);
}
static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) {
// Read-only refs are in the end of the refs list.
for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo)
@ -5462,34 +5441,6 @@ Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
break;
}
// FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
// numrefs, numrefs x valueid,
// n x (valueid, offset)]
case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
unsigned ValueID = Record[0];
uint64_t RawFlags = Record[1];
GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
unsigned NumRefs = Record[3];
unsigned RefListStartIndex = 4;
unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
std::vector<ValueInfo> Refs = makeRefList(
ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
VTableFuncList VTableFuncs;
for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
uint64_t Offset = Record[++I];
VTableFuncs.push_back({Callee, Offset});
}
auto VS =
llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
VS->setModulePath(getThisModule()->first());
VS->setVTableFuncs(VTableFuncs);
auto GUID = getValueInfoFromValueId(ValueID);
VS->setOriginalName(GUID.second);
TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
break;
}
// FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
// numrefs x valueid, n x (valueid)]
// FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
@ -5659,10 +5610,6 @@ Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
case bitc::FS_TYPE_ID:
parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
break;
case bitc::FS_TYPE_ID_METADATA:
parseTypeIdMetadataSummaryRecord(Record);
break;
}
}
llvm_unreachable("Exit infinite loop");

View File

@ -215,8 +215,7 @@ private:
const Function &F);
void writeModuleLevelReferences(const GlobalVariable &V,
SmallVector<uint64_t, 64> &NameVals,
unsigned FSModRefsAbbrev,
unsigned FSModVTableRefsAbbrev);
unsigned FSModRefsAbbrev);
void assignValueId(GlobalValue::GUID ValGUID) {
GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
@ -3529,18 +3528,6 @@ static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
W.second);
}
static void writeTypeIdMetadataSummaryRecord(
SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
const std::string &Id, const TypeIdGVInfo &Summary, ValueEnumerator &VE) {
NameVals.push_back(StrtabBuilder.add(Id));
NameVals.push_back(Id.size());
for (auto &P : Summary) {
NameVals.push_back(P.first);
NameVals.push_back(VE.getValueID(P.second.getValue()));
}
}
// Helper to emit a single function summary record.
void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
@ -3585,7 +3572,7 @@ void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
// and emit them in a summary record.
void ModuleBitcodeWriterBase::writeModuleLevelReferences(
const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
unsigned FSModRefsAbbrev) {
auto VI = Index->getValueInfo(V.getGUID());
if (!VI || VI.getSummaryList().empty()) {
// Only declarations should not have a summary (a declaration might however
@ -3599,10 +3586,6 @@ void ModuleBitcodeWriterBase::writeModuleLevelReferences(
NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
auto VTableFuncs = VS->vTableFuncs();
if (!VTableFuncs.empty())
NameVals.push_back(VS->refs().size());
unsigned SizeBeforeRefs = NameVals.size();
for (auto &RI : VS->refs())
NameVals.push_back(VE.getValueID(RI.getValue()));
@ -3610,20 +3593,8 @@ void ModuleBitcodeWriterBase::writeModuleLevelReferences(
// been initialized from a DenseSet.
llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
if (!VTableFuncs.empty()) {
// VTableFuncs pairs should already be sorted by offset.
for (auto &P : VTableFuncs) {
NameVals.push_back(VE.getValueID(P.first.getValue()));
NameVals.push_back(P.second);
}
}
if (VTableFuncs.empty())
Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
FSModRefsAbbrev);
else
Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
FSModVTableRefsAbbrev);
NameVals.clear();
}
@ -3704,17 +3675,6 @@ void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
// numrefs x valueid, n x (valueid , offset)
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for FS_ALIAS.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
@ -3747,8 +3707,7 @@ void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
// Capture references from GlobalVariable initializers, which are outside
// of a function scope.
for (const GlobalVariable &G : M.globals())
writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
FSModVTableRefsAbbrev);
writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
for (const GlobalAlias &A : M.aliases()) {
auto *Aliasee = A.getBaseObject();
@ -3766,16 +3725,6 @@ void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
NameVals.clear();
}
if (!Index->typeIdMetadataMap().empty()) {
SmallVector<uint64_t, 64> NameVals;
for (auto &S : Index->typeIdMetadataMap()) {
writeTypeIdMetadataSummaryRecord(NameVals, StrtabBuilder, S.first,
S.second, VE);
Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals);
NameVals.clear();
}
}
Stream.ExitBlock();
}

View File

@ -1038,9 +1038,6 @@ void SlotTracker::processIndex() {
TidIter != TheIndex->typeIds().end(); TidIter++)
CreateTypeIdSlot(TidIter->second.first);
for (auto &TId : TheIndex->typeIdMetadataMap())
CreateGUIDSlot(GlobalValue::getGUID(TId.first));
ST_DEBUG("end processIndex!\n");
}
@ -2396,7 +2393,6 @@ public:
void printGlobalVarSummary(const GlobalVarSummary *GS);
void printFunctionSummary(const FunctionSummary *FS);
void printTypeIdSummary(const TypeIdSummary &TIS);
void printTypeIdMetadataSummary(const TypeIdGVInfo &TI);
void printTypeTestResolution(const TypeTestResolution &TTRes);
void printArgs(const std::vector<uint64_t> &Args);
void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
@ -2699,15 +2695,6 @@ void AssemblyWriter::printModuleSummaryIndex() {
printTypeIdSummary(TidIter->second.second);
Out << ") ; guid = " << TidIter->first << "\n";
}
// Print the TypeIdMetadataMap entries.
for (auto &TId : TheIndex->typeIdMetadataMap()) {
auto GUID = GlobalValue::getGUID(TId.first);
Out << "^" << Machine.getGUIDSlot(GUID) << " = typeidMetadata: (name: \""
<< TId.first << "\"";
printTypeIdMetadataSummary(TId.second);
Out << ") ; guid = " << GUID << "\n";
}
}
static const char *
@ -2790,18 +2777,6 @@ void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
Out << ")";
}
void AssemblyWriter::printTypeIdMetadataSummary(const TypeIdGVInfo &TI) {
Out << ", summary: (";
FieldSeparator FS;
for (auto &P : TI) {
Out << FS;
Out << "(offset: " << P.first << ", ";
Out << "^" << Machine.getGUIDSlot(P.second.getGUID());
Out << ")";
}
Out << ")";
}
void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
Out << "args: (";
FieldSeparator FS;
@ -2871,19 +2846,6 @@ void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
Out << ", varFlags: (readonly: " << GS->VarFlags.ReadOnly << ")";
auto VTableFuncs = GS->vTableFuncs();
if (!VTableFuncs.empty()) {
Out << ", vTableFuncs: (";
FieldSeparator FS;
for (auto &P : VTableFuncs) {
Out << FS;
Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.first.getGUID())
<< ", offset: " << P.second;
Out << ")";
}
Out << ")";
}
}
static std::string getLinkageName(GlobalValue::LinkageTypes LT) {

View File

@ -418,55 +418,34 @@ void splitAndWriteThinLTOBitcode(
}
}
// Check if the LTO Unit splitting has been enabled.
bool enableSplitLTOUnit(Module &M) {
// Returns whether this module needs to be split because splitting is
// enabled and it uses type metadata.
bool requiresSplit(Module &M) {
// First check if the LTO Unit splitting has been enabled.
bool EnableSplitLTOUnit = false;
if (auto *MD = mdconst::extract_or_null<ConstantInt>(
M.getModuleFlag("EnableSplitLTOUnit")))
EnableSplitLTOUnit = MD->getZExtValue();
return EnableSplitLTOUnit;
}
if (!EnableSplitLTOUnit)
return false;
// Returns whether this module needs to be split because it uses type metadata.
bool hasTypeMetadata(Module &M) {
// Module only needs to be split if it contains type metadata.
for (auto &GO : M.global_objects()) {
if (GO.hasMetadata(LLVMContext::MD_type))
return true;
}
return false;
}
void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
function_ref<AAResults &(Function &)> AARGetter,
Module &M, const ModuleSummaryIndex *Index) {
std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr;
// See if this module has any type metadata. If so, we try to split it
// or at least promote type ids to enable WPD.
if (hasTypeMetadata(M)) {
if (enableSplitLTOUnit(M))
// Split module if splitting is enabled and it contains any type metadata.
if (requiresSplit(M))
return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
else {
// Promote type ids as needed for index-based WPD.
std::string ModuleId = getUniqueModuleId(&M);
if (!ModuleId.empty()) {
promoteTypeIds(M, ModuleId);
// Need to rebuild the index so that it contains type metadata
// for the newly promoted type ids.
// FIXME: Probably should not bother building the index at all
// in the caller of writeThinLTOBitcode (which does so via the
// ModuleSummaryIndexAnalysis pass), since we have to rebuild it
// anyway whenever there is type metadata (here or in
// splitAndWriteThinLTOBitcode). Just always build it once via the
// buildModuleSummaryIndex when Module(s) are ready.
ProfileSummaryInfo PSI(M);
NewIndex = llvm::make_unique<ModuleSummaryIndex>(
buildModuleSummaryIndex(M, nullptr, &PSI));
Index = NewIndex.get();
}
}
}
// Write it out as an unsplit ThinLTO module.
// Otherwise we can just write it out as a regular module.
// Save the module hash produced for the full bitcode, which will
// be used in the backends, and use that in the minimized bitcode

View File

@ -1,38 +0,0 @@
; Test summary parsing of index-based WPD related summary fields
; RUN: llvm-as %s -o - | llvm-dis -o %t.ll
; RUN: grep "^\^" %s >%t2
; RUN: grep "^\^" %t.ll >%t3
; Expect that the summary information is the same after round-trip through
; llvm-as and llvm-dis.
; RUN: diff %t2 %t3
source_filename = "thinlto-vtable-summary.ll"
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-grtev4-linux-gnu"
%struct.A = type { i32 (...)** }
%struct.B = type { %struct.A }
%struct.C = type { %struct.A }
@_ZTV1B = constant { [4 x i8*] } { [4 x i8*] [i8* null, i8* undef, i8* bitcast (i32 (%struct.B*, i32)* @_ZN1B1fEi to i8*), i8* bitcast (i32 (%struct.A*, i32)* @_ZN1A1nEi to i8*)] }, !type !0, !type !1
@_ZTV1C = constant { [4 x i8*] } { [4 x i8*] [i8* null, i8* undef, i8* bitcast (i32 (%struct.C*, i32)* @_ZN1C1fEi to i8*), i8* bitcast (i32 (%struct.A*, i32)* @_ZN1A1nEi to i8*)] }, !type !0, !type !2
declare i32 @_ZN1B1fEi(%struct.B*, i32)
declare i32 @_ZN1A1nEi(%struct.A*, i32)
declare i32 @_ZN1C1fEi(%struct.C*, i32)
!0 = !{i64 16, !"_ZTS1A"}
!1 = !{i64 16, !"_ZTS1B"}
!2 = !{i64 16, !"_ZTS1C"}
^0 = module: (path: "<stdin>", hash: (0, 0, 0, 0, 0))
^1 = gv: (name: "_ZN1A1nEi") ; guid = 1621563287929432257
^2 = gv: (name: "_ZTV1B", summaries: (variable: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), varFlags: (readonly: 0), vTableFuncs: ((virtFunc: ^3, offset: 16), (virtFunc: ^1, offset: 24)), refs: (^3, ^1)))) ; guid = 5283576821522790367
^3 = gv: (name: "_ZN1B1fEi") ; guid = 7162046368816414394
^4 = gv: (name: "_ZTV1C", summaries: (variable: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), varFlags: (readonly: 0), vTableFuncs: ((virtFunc: ^5, offset: 16), (virtFunc: ^1, offset: 24)), refs: (^1, ^5)))) ; guid = 13624023785555846296
^5 = gv: (name: "_ZN1C1fEi") ; guid = 14876272565662207556
^6 = typeidMetadata: (name: "_ZTS1A", summary: ((offset: 16, ^2), (offset: 16, ^4))) ; guid = 7004155349499253778
^7 = typeidMetadata: (name: "_ZTS1B", summary: ((offset: 16, ^2))) ; guid = 6203814149063363976
^8 = typeidMetadata: (name: "_ZTS1C", summary: ((offset: 16, ^4))) ; guid = 1884921850105019584

View File

@ -1,146 +0,0 @@
; REQUIRES: x86-registered-target
; Test devirtualization through the thin link and backend.
; Generate split module with summary for hybrid Thin/Regular LTO WPD.
; RUN: opt -thinlto-bc -thinlto-split-lto-unit -o %t.o %s
; Check that we have module flag showing splitting enabled, and that we don't
; generate summary information needed for index-based WPD.
; RUN: llvm-modextract -b -n=0 %t.o -o %t.o.0
; RUN: llvm-dis -o - %t.o.0 | FileCheck %s --check-prefix=ENABLESPLITFLAG --implicit-check-not=vTableFuncs --implicit-check-not=typeidMetadata
; RUN: llvm-modextract -b -n=1 %t.o -o %t.o.1
; RUN: llvm-dis -o - %t.o.1 | FileCheck %s --check-prefix=ENABLESPLITFLAG --implicit-check-not=vTableFuncs --implicit-check-not=typeidMetadata
; ENABLESPLITFLAG: !{i32 1, !"EnableSplitLTOUnit", i32 1}
; Generate unsplit module with summary for ThinLTO index-based WPD.
; RUN: opt -thinlto-bc -o %t2.o %s
; Check that we don't have module flag when splitting not enabled for ThinLTO,
; and that we generate summary information needed for index-based WPD.
; RUN: llvm-dis -o - %t2.o | FileCheck %s --check-prefix=NOENABLESPLITFLAG
; NOENABLESPLITFLAG-DAG: !{i32 1, !"EnableSplitLTOUnit", i32 0}
; NOENABLESPLITFLAG-DAG: [[An:\^[0-9]+]] = gv: (name: "_ZN1A1nEi")
; NOENABLESPLITFLAG-DAG: [[Bf:\^[0-9]+]] = gv: (name: "_ZN1B1fEi")
; NOENABLESPLITFLAG-DAG: [[Cf:\^[0-9]+]] = gv: (name: "_ZN1C1fEi")
; NOENABLESPLITFLAG-DAG: [[Dm:\^[0-9]+]] = gv: (name: "_ZN1D1mEi")
; NOENABLESPLITFLAG-DAG: [[B:\^[0-9]+]] = gv: (name: "_ZTV1B", {{.*}} vTableFuncs: ((virtFunc: [[Bf]], offset: 16), (virtFunc: [[An]], offset: 24)), refs: ([[Bf]], [[An]])
; NOENABLESPLITFLAG-DAG: [[C:\^[0-9]+]] = gv: (name: "_ZTV1C", {{.*}} vTableFuncs: ((virtFunc: [[Cf]], offset: 16), (virtFunc: [[An]], offset: 24)), refs: ([[An]], [[Cf]])
; NOENABLESPLITFLAG-DAG: [[D:\^[0-9]+]] = gv: (name: "_ZTV1D", {{.*}} vTableFuncs: ((virtFunc: [[Dm]], offset: 16)), refs: ([[Dm]])
; NOENABLESPLITFLAG-DAG: typeidMetadata: (name: "_ZTS1A", summary: ((offset: 16, [[B]]), (offset: 16, [[C]])))
; NOENABLESPLITFLAG-DAG: typeidMetadata: (name: "_ZTS1B", summary: ((offset: 16, [[B]])))
; NOENABLESPLITFLAG-DAG: typeidMetadata: (name: "_ZTS1C", summary: ((offset: 16, [[C]])))
; Type Id on _ZTV1D should have been promoted
; NOENABLESPLITFLAG-DAG: typeidMetadata: (name: "1${{.*}}", summary: ((offset: 16, [[D]])))
; TODO: Test index-based WPD one %t2.o once implemented.
; Legacy PM
; RUN: llvm-lto2 run %t.o -save-temps -pass-remarks=. \
; RUN: -o %t3 \
; RUN: -r=%t.o,test,px \
; RUN: -r=%t.o,_ZN1A1nEi,p \
; RUN: -r=%t.o,_ZN1B1fEi,p \
; RUN: -r=%t.o,_ZN1C1fEi,p \
; RUN: -r=%t.o,_ZN1D1mEi,p \
; RUN: -r=%t.o,_ZTV1B, \
; RUN: -r=%t.o,_ZTV1C, \
; RUN: -r=%t.o,_ZTV1D, \
; RUN: -r=%t.o,_ZN1A1nEi, \
; RUN: -r=%t.o,_ZN1B1fEi, \
; RUN: -r=%t.o,_ZN1C1fEi, \
; RUN: -r=%t.o,_ZN1D1mEi, \
; RUN: -r=%t.o,_ZTV1B,px \
; RUN: -r=%t.o,_ZTV1C,px \
; RUN: -r=%t.o,_ZTV1D,px 2>&1 | FileCheck %s --check-prefix=REMARK
; RUN: llvm-dis %t3.1.4.opt.bc -o - | FileCheck %s --check-prefix=CHECK-IR
; New PM
; RUN: llvm-lto2 run %t.o -save-temps -use-new-pm -pass-remarks=. \
; RUN: -o %t3 \
; RUN: -r=%t.o,test,px \
; RUN: -r=%t.o,_ZN1A1nEi,p \
; RUN: -r=%t.o,_ZN1B1fEi,p \
; RUN: -r=%t.o,_ZN1C1fEi,p \
; RUN: -r=%t.o,_ZN1D1mEi,p \
; RUN: -r=%t.o,_ZTV1B, \
; RUN: -r=%t.o,_ZTV1C, \
; RUN: -r=%t.o,_ZTV1D, \
; RUN: -r=%t.o,_ZN1A1nEi, \
; RUN: -r=%t.o,_ZN1B1fEi, \
; RUN: -r=%t.o,_ZN1C1fEi, \
; RUN: -r=%t.o,_ZN1D1mEi, \
; RUN: -r=%t.o,_ZTV1B,px \
; RUN: -r=%t.o,_ZTV1C,px \
; RUN: -r=%t.o,_ZTV1D,px 2>&1 | FileCheck %s --check-prefix=REMARK
; RUN: llvm-dis %t3.1.4.opt.bc -o - | FileCheck %s --check-prefix=CHECK-IR
; REMARK-DAG: single-impl: devirtualized a call to _ZN1A1nEi
; REMARK-DAG: single-impl: devirtualized a call to _ZN1D1mEi
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-grtev4-linux-gnu"
%struct.A = type { i32 (...)** }
%struct.B = type { %struct.A }
%struct.C = type { %struct.A }
%struct.D = type { i32 (...)** }
@_ZTV1B = constant { [4 x i8*] } { [4 x i8*] [i8* null, i8* undef, i8* bitcast (i32 (%struct.B*, i32)* @_ZN1B1fEi to i8*), i8* bitcast (i32 (%struct.A*, i32)* @_ZN1A1nEi to i8*)] }, !type !0, !type !1
@_ZTV1C = constant { [4 x i8*] } { [4 x i8*] [i8* null, i8* undef, i8* bitcast (i32 (%struct.C*, i32)* @_ZN1C1fEi to i8*), i8* bitcast (i32 (%struct.A*, i32)* @_ZN1A1nEi to i8*)] }, !type !0, !type !2
@_ZTV1D = constant { [3 x i8*] } { [3 x i8*] [i8* null, i8* undef, i8* bitcast (i32 (%struct.D*, i32)* @_ZN1D1mEi to i8*)] }, !type !3
; CHECK-IR-LABEL: define i32 @test
define i32 @test(%struct.A* %obj, %struct.D* %obj2, i32 %a) {
entry:
%0 = bitcast %struct.A* %obj to i8***
%vtable = load i8**, i8*** %0
%1 = bitcast i8** %vtable to i8*
%p = call i1 @llvm.type.test(i8* %1, metadata !"_ZTS1A")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr i8*, i8** %vtable, i32 1
%2 = bitcast i8** %fptrptr to i32 (%struct.A*, i32)**
%fptr1 = load i32 (%struct.A*, i32)*, i32 (%struct.A*, i32)** %2, align 8
; Check that the call was devirtualized.
; CHECK-IR: %call = tail call i32 @_ZN1A1nEi
%call = tail call i32 %fptr1(%struct.A* nonnull %obj, i32 %a)
%3 = bitcast i8** %vtable to i32 (%struct.A*, i32)**
%fptr22 = load i32 (%struct.A*, i32)*, i32 (%struct.A*, i32)** %3, align 8
; We still have to call it as virtual.
; CHECK-IR: %call3 = tail call i32 %fptr22
%call3 = tail call i32 %fptr22(%struct.A* nonnull %obj, i32 %call)
%4 = bitcast %struct.D* %obj2 to i8***
%vtable2 = load i8**, i8*** %4
%5 = bitcast i8** %vtable2 to i8*
%p2 = call i1 @llvm.type.test(i8* %5, metadata !4)
call void @llvm.assume(i1 %p2)
%6 = bitcast i8** %vtable2 to i32 (%struct.D*, i32)**
%fptr33 = load i32 (%struct.D*, i32)*, i32 (%struct.D*, i32)** %6, align 8
; Check that the call was devirtualized.
; CHECK-IR: %call4 = tail call i32 @_ZN1D1mEi
%call4 = tail call i32 %fptr33(%struct.D* nonnull %obj2, i32 %call3)
ret i32 %call4
}
; CHECK-IR-LABEL: ret i32
; CHECK-IR-LABEL: }
declare i1 @llvm.type.test(i8*, metadata)
declare void @llvm.assume(i1)
declare i32 @_ZN1B1fEi(%struct.B* %this, i32 %a)
declare i32 @_ZN1A1nEi(%struct.A* %this, i32 %a)
declare i32 @_ZN1C1fEi(%struct.C* %this, i32 %a)
declare i32 @_ZN1D1mEi(%struct.D* %this, i32 %a)
!0 = !{i64 16, !"_ZTS1A"}
!1 = !{i64 16, !"_ZTS1B"}
!2 = !{i64 16, !"_ZTS1C"}
!3 = !{i64 16, !4}
!4 = distinct !{}

View File

@ -317,7 +317,6 @@ static const char *GetCodeName(unsigned CodeID, unsigned BlockID,
STRINGIFY_CODE(FS, PERMODULE_PROFILE)
STRINGIFY_CODE(FS, PERMODULE_RELBF)
STRINGIFY_CODE(FS, PERMODULE_GLOBALVAR_INIT_REFS)
STRINGIFY_CODE(FS, PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)
STRINGIFY_CODE(FS, COMBINED)
STRINGIFY_CODE(FS, COMBINED_PROFILE)
STRINGIFY_CODE(FS, COMBINED_GLOBALVAR_INIT_REFS)
@ -335,7 +334,6 @@ static const char *GetCodeName(unsigned CodeID, unsigned BlockID,
STRINGIFY_CODE(FS, CFI_FUNCTION_DEFS)
STRINGIFY_CODE(FS, CFI_FUNCTION_DECLS)
STRINGIFY_CODE(FS, TYPE_ID)
STRINGIFY_CODE(FS, TYPE_ID_METADATA)
}
case bitc::METADATA_ATTACHMENT_ID:
switch(CodeID) {