1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00

Revert "[macho][NFC] Extract all CPU_(SUB_)TYPE logic to libObject"

This reverts commit 726c342ce27ada28efe90cb04ffb69c75065710a.

This breaks the windows bots with linker errors.
This commit is contained in:
Francis Visoiu Mistrih 2020-02-20 10:51:25 -08:00
parent 13b4fc1781
commit e96a7a4c4c
8 changed files with 226 additions and 262 deletions

View File

@ -571,10 +571,6 @@ public:
static Triple getArchTriple(uint32_t CPUType, uint32_t CPUSubType,
const char **McpuDefault = nullptr,
const char **ArchFlag = nullptr);
static Expected<uint32_t> getCPUTypeFromTriple(const Triple &T);
static Expected<uint32_t> getCPUSubTypeFromTriple(const Triple &T);
static bool isValidArch(StringRef ArchFlag);
static ArrayRef<StringRef> getValidArchs();
static Triple getHostArch();

View File

@ -24,7 +24,6 @@
#include "llvm/Object/MachO.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Object/SymbolicFile.h"
#include "llvm/Support/ARMTargetParser.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Error.h"
@ -2722,94 +2721,6 @@ Triple MachOObjectFile::getArchTriple(uint32_t CPUType, uint32_t CPUSubType,
}
}
static MachO::CPUSubTypeX86 getX86SubTypeFromTriple(const Triple &T) {
assert(T.isX86());
if (T.isArch32Bit())
return MachO::CPU_SUBTYPE_I386_ALL;
assert(T.isArch64Bit());
if (T.getArchName() == "x86_64h")
return MachO::CPU_SUBTYPE_X86_64_H;
return MachO::CPU_SUBTYPE_X86_64_ALL;
}
static MachO::CPUSubTypeARM getARMSubTypeFromTriple(const Triple &T) {
assert(T.isARM() || T.isThumb());
StringRef Arch = T.getArchName();
ARM::ArchKind AK = ARM::parseArch(Arch);
switch (AK) {
default:
return MachO::CPU_SUBTYPE_ARM_V7;
case ARM::ArchKind::ARMV4T:
return MachO::CPU_SUBTYPE_ARM_V4T;
case ARM::ArchKind::ARMV5T:
case ARM::ArchKind::ARMV5TE:
case ARM::ArchKind::ARMV5TEJ:
return MachO::CPU_SUBTYPE_ARM_V5;
case ARM::ArchKind::ARMV6:
case ARM::ArchKind::ARMV6K:
return MachO::CPU_SUBTYPE_ARM_V6;
case ARM::ArchKind::ARMV7A:
return MachO::CPU_SUBTYPE_ARM_V7;
case ARM::ArchKind::ARMV7S:
return MachO::CPU_SUBTYPE_ARM_V7S;
case ARM::ArchKind::ARMV7K:
return MachO::CPU_SUBTYPE_ARM_V7K;
case ARM::ArchKind::ARMV6M:
return MachO::CPU_SUBTYPE_ARM_V6M;
case ARM::ArchKind::ARMV7M:
return MachO::CPU_SUBTYPE_ARM_V7M;
case ARM::ArchKind::ARMV7EM:
return MachO::CPU_SUBTYPE_ARM_V7EM;
}
}
static MachO::CPUSubTypeARM64 getARM64SubTypeFromTriple(const Triple &T) {
assert(T.isAArch64() || T.getArch() == Triple::aarch64_32);
if (T.isArch32Bit())
return (MachO::CPUSubTypeARM64)MachO::CPU_SUBTYPE_ARM64_32_V8;
if (T.getArchName() == "arm64e")
return MachO::CPU_SUBTYPE_ARM64E;
return MachO::CPU_SUBTYPE_ARM64_ALL;
}
static MachO::CPUSubTypePowerPC getPowerPCSubTypeFromTriple(const Triple &T) {
return MachO::CPU_SUBTYPE_POWERPC_ALL;
}
Expected<uint32_t> MachOObjectFile::getCPUTypeFromTriple(const Triple &T) {
if (T.isX86() && T.isArch32Bit())
return MachO::CPU_TYPE_X86;
if (T.isX86() && T.isArch64Bit())
return MachO::CPU_TYPE_X86_64;
if (T.isARM() || T.isThumb())
return MachO::CPU_TYPE_ARM;
if (T.isAArch64())
return MachO::CPU_TYPE_ARM64;
if (T.getArch() == Triple::aarch64_32)
return MachO::CPU_TYPE_ARM64_32;
if (T.getArch() == Triple::ppc)
return MachO::CPU_TYPE_POWERPC;
if (T.getArch() == Triple::ppc64)
return MachO::CPU_TYPE_POWERPC64;
return createStringError(std::errc::invalid_argument,
"Unsupported triple for mach-o cpu type.");
}
Expected<uint32_t> MachOObjectFile::getCPUSubTypeFromTriple(const Triple &T) {
if (T.isX86())
return getX86SubTypeFromTriple(T);
if (T.isARM() || T.isThumb())
return getARMSubTypeFromTriple(T);
if (T.isAArch64() || T.getArch() == Triple::aarch64_32)
return getARM64SubTypeFromTriple(T);
if (T.getArch() == Triple::ppc || T.getArch() == Triple::ppc64)
return getPowerPCSubTypeFromTriple(T);
return createStringError(std::errc::invalid_argument,
"Unsupported triple for mach-o cpu subtype.");
}
Triple MachOObjectFile::getHostArch() {
return Triple(sys::getDefaultTargetTriple());
}

View File

@ -24,7 +24,6 @@
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Object/MachO.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
@ -34,7 +33,6 @@ namespace {
class AArch64AsmBackend : public MCAsmBackend {
static const unsigned PCRelFlagVal =
MCFixupKindInfo::FKF_IsAlignedDownTo32Bits | MCFixupKindInfo::FKF_IsPCRel;
protected:
Triple TheTriple;
public:
@ -546,6 +544,7 @@ enum CompactUnwindEncodings {
// FIXME: This should be in a separate file.
class DarwinAArch64AsmBackend : public AArch64AsmBackend {
const MCRegisterInfo &MRI;
bool IsILP32;
/// Encode compact unwind stack adjustment for frameless functions.
/// See UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK in compact_unwind_encoding.h.
@ -556,17 +555,18 @@ class DarwinAArch64AsmBackend : public AArch64AsmBackend {
public:
DarwinAArch64AsmBackend(const Target &T, const Triple &TT,
const MCRegisterInfo &MRI)
: AArch64AsmBackend(T, TT, /*IsLittleEndian*/ true), MRI(MRI) {}
const MCRegisterInfo &MRI, bool IsILP32)
: AArch64AsmBackend(T, TT, /*IsLittleEndian*/ true), MRI(MRI),
IsILP32(IsILP32) {}
std::unique_ptr<MCObjectTargetWriter>
createObjectTargetWriter() const override {
uint32_t CPUType =
cantFail(object::MachOObjectFile::getCPUTypeFromTriple(TheTriple));
uint32_t CPUSubType =
cantFail(object::MachOObjectFile::getCPUSubTypeFromTriple(TheTriple));
return createAArch64MachObjectWriter(CPUType, CPUSubType,
TheTriple.isArch32Bit());
if (IsILP32)
return createAArch64MachObjectWriter(
MachO::CPU_TYPE_ARM64_32, MachO::CPU_SUBTYPE_ARM64_32_V8, true);
else
return createAArch64MachObjectWriter(MachO::CPU_TYPE_ARM64,
MachO::CPU_SUBTYPE_ARM64_ALL, false);
}
/// Generate the compact unwind encoding from the CFI directives.
@ -749,7 +749,8 @@ MCAsmBackend *llvm::createAArch64leAsmBackend(const Target &T,
const MCTargetOptions &Options) {
const Triple &TheTriple = STI.getTargetTriple();
if (TheTriple.isOSBinFormatMachO()) {
return new DarwinAArch64AsmBackend(T, TheTriple, MRI);
const bool IsILP32 = TheTriple.isArch32Bit();
return new DarwinAArch64AsmBackend(T, TheTriple, MRI, IsILP32);
}
if (TheTriple.isOSBinFormatCOFF())

View File

@ -1277,6 +1277,35 @@ uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding(
return CompactUnwindEncoding | ((FloatRegCount - 1) << 8);
}
static MachO::CPUSubTypeARM getMachOSubTypeFromArch(StringRef Arch) {
ARM::ArchKind AK = ARM::parseArch(Arch);
switch (AK) {
default:
return MachO::CPU_SUBTYPE_ARM_V7;
case ARM::ArchKind::ARMV4T:
return MachO::CPU_SUBTYPE_ARM_V4T;
case ARM::ArchKind::ARMV5T:
case ARM::ArchKind::ARMV5TE:
case ARM::ArchKind::ARMV5TEJ:
return MachO::CPU_SUBTYPE_ARM_V5;
case ARM::ArchKind::ARMV6:
case ARM::ArchKind::ARMV6K:
return MachO::CPU_SUBTYPE_ARM_V6;
case ARM::ArchKind::ARMV7A:
return MachO::CPU_SUBTYPE_ARM_V7;
case ARM::ArchKind::ARMV7S:
return MachO::CPU_SUBTYPE_ARM_V7S;
case ARM::ArchKind::ARMV7K:
return MachO::CPU_SUBTYPE_ARM_V7K;
case ARM::ArchKind::ARMV6M:
return MachO::CPU_SUBTYPE_ARM_V6M;
case ARM::ArchKind::ARMV7M:
return MachO::CPU_SUBTYPE_ARM_V7M;
case ARM::ArchKind::ARMV7EM:
return MachO::CPU_SUBTYPE_ARM_V7EM;
}
}
static MCAsmBackend *createARMAsmBackend(const Target &T,
const MCSubtargetInfo &STI,
const MCRegisterInfo &MRI,
@ -1286,8 +1315,10 @@ static MCAsmBackend *createARMAsmBackend(const Target &T,
switch (TheTriple.getObjectFormat()) {
default:
llvm_unreachable("unsupported object format");
case Triple::MachO:
return new ARMAsmBackendDarwin(T, STI, MRI);
case Triple::MachO: {
MachO::CPUSubTypeARM CS = getMachOSubTypeFromArch(TheTriple.getArchName());
return new ARMAsmBackendDarwin(T, STI, MRI, CS);
}
case Triple::COFF:
assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
return new ARMAsmBackendWinCOFF(T, STI);

View File

@ -12,27 +12,20 @@
#include "ARMAsmBackend.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/Object/MachO.h"
namespace llvm {
class ARMAsmBackendDarwin : public ARMAsmBackend {
const MCRegisterInfo &MRI;
Triple TT;
public:
const MachO::CPUSubTypeARM Subtype;
ARMAsmBackendDarwin(const Target &T, const MCSubtargetInfo &STI,
const MCRegisterInfo &MRI)
: ARMAsmBackend(T, STI, support::little), MRI(MRI),
TT(STI.getTargetTriple()),
Subtype((MachO::CPUSubTypeARM)cantFail(
object::MachOObjectFile::getCPUSubTypeFromTriple(
STI.getTargetTriple()))) {}
const MCRegisterInfo &MRI, MachO::CPUSubTypeARM st)
: ARMAsmBackend(T, STI, support::little), MRI(MRI), Subtype(st) {}
std::unique_ptr<MCObjectTargetWriter>
createObjectTargetWriter() const override {
return createARMMachObjectWriter(
/*Is64Bit=*/false,
cantFail(object::MachOObjectFile::getCPUTypeFromTriple(TT)), Subtype);
return createARMMachObjectWriter(/*Is64Bit=*/false, MachO::CPU_TYPE_ARM,
Subtype);
}
uint32_t generateCompactUnwindEncoding(

View File

@ -20,7 +20,6 @@
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbolELF.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Object/MachO.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
@ -208,11 +207,11 @@ public:
std::unique_ptr<MCObjectTargetWriter>
createObjectTargetWriter() const override {
uint32_t CPUType =
cantFail(object::MachOObjectFile::getCPUTypeFromTriple(TT));
uint32_t CPUSubType =
cantFail(object::MachOObjectFile::getCPUSubTypeFromTriple(TT));
return createPPCMachObjectWriter(TT.isArch64Bit(), CPUType, CPUSubType);
bool Is64 = TT.isPPC64();
return createPPCMachObjectWriter(
/*Is64Bit=*/Is64,
(Is64 ? MachO::CPU_TYPE_POWERPC64 : MachO::CPU_TYPE_POWERPC),
MachO::CPU_SUBTYPE_POWERPC_ALL);
}
};

View File

@ -27,7 +27,6 @@
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Object/MachO.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
@ -812,7 +811,6 @@ class DarwinX86AsmBackend : public X86AsmBackend {
enum { CU_NUM_SAVED_REGS = 6 };
mutable unsigned SavedRegs[CU_NUM_SAVED_REGS];
Triple TT;
bool Is64Bit;
unsigned OffsetSize; ///< Offset of a "push" instruction.
@ -840,142 +838,10 @@ protected:
return 1;
}
private:
/// Get the compact unwind number for a given register. The number
/// corresponds to the enum lists in compact_unwind_encoding.h.
int getCompactUnwindRegNum(unsigned Reg) const {
static const MCPhysReg CU32BitRegs[7] = {
X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
};
static const MCPhysReg CU64BitRegs[] = {
X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
};
const MCPhysReg *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs;
for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
if (*CURegs == Reg)
return Idx;
return -1;
}
/// Return the registers encoded for a compact encoding with a frame
/// pointer.
uint32_t encodeCompactUnwindRegistersWithFrame() const {
// Encode the registers in the order they were saved --- 3-bits per
// register. The list of saved registers is assumed to be in reverse
// order. The registers are numbered from 1 to CU_NUM_SAVED_REGS.
uint32_t RegEnc = 0;
for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) {
unsigned Reg = SavedRegs[i];
if (Reg == 0) break;
int CURegNum = getCompactUnwindRegNum(Reg);
if (CURegNum == -1) return ~0U;
// Encode the 3-bit register number in order, skipping over 3-bits for
// each register.
RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
}
assert((RegEnc & 0x3FFFF) == RegEnc &&
"Invalid compact register encoding!");
return RegEnc;
}
/// Create the permutation encoding used with frameless stacks. It is
/// passed the number of registers to be saved and an array of the registers
/// saved.
uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const {
// The saved registers are numbered from 1 to 6. In order to encode the
// order in which they were saved, we re-number them according to their
// place in the register order. The re-numbering is relative to the last
// re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in
// that order:
//
// Orig Re-Num
// ---- ------
// 6 6
// 2 2
// 4 3
// 5 3
//
for (unsigned i = 0; i < RegCount; ++i) {
int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
if (CUReg == -1) return ~0U;
SavedRegs[i] = CUReg;
}
// Reverse the list.
std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]);
uint32_t RenumRegs[CU_NUM_SAVED_REGS];
for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){
unsigned Countless = 0;
for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
if (SavedRegs[j] < SavedRegs[i])
++Countless;
RenumRegs[i] = SavedRegs[i] - Countless - 1;
}
// Take the renumbered values and encode them into a 10-bit number.
uint32_t permutationEncoding = 0;
switch (RegCount) {
case 6:
permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
+ 6 * RenumRegs[2] + 2 * RenumRegs[3]
+ RenumRegs[4];
break;
case 5:
permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
+ 6 * RenumRegs[3] + 2 * RenumRegs[4]
+ RenumRegs[5];
break;
case 4:
permutationEncoding |= 60 * RenumRegs[2] + 12 * RenumRegs[3]
+ 3 * RenumRegs[4] + RenumRegs[5];
break;
case 3:
permutationEncoding |= 20 * RenumRegs[3] + 4 * RenumRegs[4]
+ RenumRegs[5];
break;
case 2:
permutationEncoding |= 5 * RenumRegs[4] + RenumRegs[5];
break;
case 1:
permutationEncoding |= RenumRegs[5];
break;
}
assert((permutationEncoding & 0x3FF) == permutationEncoding &&
"Invalid compact register encoding!");
return permutationEncoding;
}
public:
DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI,
const MCSubtargetInfo &STI)
: X86AsmBackend(T, STI), MRI(MRI), TT(STI.getTargetTriple()),
Is64Bit(TT.isArch64Bit()) {
memset(SavedRegs, 0, sizeof(SavedRegs));
OffsetSize = Is64Bit ? 8 : 4;
MoveInstrSize = Is64Bit ? 3 : 2;
StackDivide = Is64Bit ? 8 : 4;
}
std::unique_ptr<MCObjectTargetWriter>
createObjectTargetWriter() const override {
uint32_t CPUType =
cantFail(object::MachOObjectFile::getCPUTypeFromTriple(TT));
uint32_t CPUSubType =
cantFail(object::MachOObjectFile::getCPUSubTypeFromTriple(TT));
return createX86MachObjectWriter(Is64Bit, CPUType, CPUSubType);
}
/// Implementation of algorithm to generate the compact unwind encoding
/// for the CFI instructions.
uint32_t
generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const override {
generateCompactUnwindEncodingImpl(ArrayRef<MCCFIInstruction> Instrs) const {
if (Instrs.empty()) return 0;
// Reset the saved registers.
@ -1125,6 +991,168 @@ public:
return CompactUnwindEncoding;
}
private:
/// Get the compact unwind number for a given register. The number
/// corresponds to the enum lists in compact_unwind_encoding.h.
int getCompactUnwindRegNum(unsigned Reg) const {
static const MCPhysReg CU32BitRegs[7] = {
X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
};
static const MCPhysReg CU64BitRegs[] = {
X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
};
const MCPhysReg *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs;
for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
if (*CURegs == Reg)
return Idx;
return -1;
}
/// Return the registers encoded for a compact encoding with a frame
/// pointer.
uint32_t encodeCompactUnwindRegistersWithFrame() const {
// Encode the registers in the order they were saved --- 3-bits per
// register. The list of saved registers is assumed to be in reverse
// order. The registers are numbered from 1 to CU_NUM_SAVED_REGS.
uint32_t RegEnc = 0;
for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) {
unsigned Reg = SavedRegs[i];
if (Reg == 0) break;
int CURegNum = getCompactUnwindRegNum(Reg);
if (CURegNum == -1) return ~0U;
// Encode the 3-bit register number in order, skipping over 3-bits for
// each register.
RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
}
assert((RegEnc & 0x3FFFF) == RegEnc &&
"Invalid compact register encoding!");
return RegEnc;
}
/// Create the permutation encoding used with frameless stacks. It is
/// passed the number of registers to be saved and an array of the registers
/// saved.
uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const {
// The saved registers are numbered from 1 to 6. In order to encode the
// order in which they were saved, we re-number them according to their
// place in the register order. The re-numbering is relative to the last
// re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in
// that order:
//
// Orig Re-Num
// ---- ------
// 6 6
// 2 2
// 4 3
// 5 3
//
for (unsigned i = 0; i < RegCount; ++i) {
int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
if (CUReg == -1) return ~0U;
SavedRegs[i] = CUReg;
}
// Reverse the list.
std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]);
uint32_t RenumRegs[CU_NUM_SAVED_REGS];
for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){
unsigned Countless = 0;
for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
if (SavedRegs[j] < SavedRegs[i])
++Countless;
RenumRegs[i] = SavedRegs[i] - Countless - 1;
}
// Take the renumbered values and encode them into a 10-bit number.
uint32_t permutationEncoding = 0;
switch (RegCount) {
case 6:
permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
+ 6 * RenumRegs[2] + 2 * RenumRegs[3]
+ RenumRegs[4];
break;
case 5:
permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
+ 6 * RenumRegs[3] + 2 * RenumRegs[4]
+ RenumRegs[5];
break;
case 4:
permutationEncoding |= 60 * RenumRegs[2] + 12 * RenumRegs[3]
+ 3 * RenumRegs[4] + RenumRegs[5];
break;
case 3:
permutationEncoding |= 20 * RenumRegs[3] + 4 * RenumRegs[4]
+ RenumRegs[5];
break;
case 2:
permutationEncoding |= 5 * RenumRegs[4] + RenumRegs[5];
break;
case 1:
permutationEncoding |= RenumRegs[5];
break;
}
assert((permutationEncoding & 0x3FF) == permutationEncoding &&
"Invalid compact register encoding!");
return permutationEncoding;
}
public:
DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI,
const MCSubtargetInfo &STI, bool Is64Bit)
: X86AsmBackend(T, STI), MRI(MRI), Is64Bit(Is64Bit) {
memset(SavedRegs, 0, sizeof(SavedRegs));
OffsetSize = Is64Bit ? 8 : 4;
MoveInstrSize = Is64Bit ? 3 : 2;
StackDivide = Is64Bit ? 8 : 4;
}
};
class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
public:
DarwinX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI,
const MCSubtargetInfo &STI)
: DarwinX86AsmBackend(T, MRI, STI, false) {}
std::unique_ptr<MCObjectTargetWriter>
createObjectTargetWriter() const override {
return createX86MachObjectWriter(/*Is64Bit=*/false,
MachO::CPU_TYPE_I386,
MachO::CPU_SUBTYPE_I386_ALL);
}
/// Generate the compact unwind encoding for the CFI instructions.
uint32_t generateCompactUnwindEncoding(
ArrayRef<MCCFIInstruction> Instrs) const override {
return generateCompactUnwindEncodingImpl(Instrs);
}
};
class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
const MachO::CPUSubTypeX86 Subtype;
public:
DarwinX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI,
const MCSubtargetInfo &STI, MachO::CPUSubTypeX86 st)
: DarwinX86AsmBackend(T, MRI, STI, true), Subtype(st) {}
std::unique_ptr<MCObjectTargetWriter>
createObjectTargetWriter() const override {
return createX86MachObjectWriter(/*Is64Bit=*/true, MachO::CPU_TYPE_X86_64,
Subtype);
}
/// Generate the compact unwind encoding for the CFI instructions.
uint32_t generateCompactUnwindEncoding(
ArrayRef<MCCFIInstruction> Instrs) const override {
return generateCompactUnwindEncodingImpl(Instrs);
}
};
} // end anonymous namespace
@ -1135,7 +1163,7 @@ MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
const MCTargetOptions &Options) {
const Triple &TheTriple = STI.getTargetTriple();
if (TheTriple.isOSBinFormatMachO())
return new DarwinX86AsmBackend(T, MRI, STI);
return new DarwinX86_32AsmBackend(T, MRI, STI);
if (TheTriple.isOSWindows() && TheTriple.isOSBinFormatCOFF())
return new WindowsX86AsmBackend(T, false, STI);
@ -1153,8 +1181,13 @@ MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
const MCRegisterInfo &MRI,
const MCTargetOptions &Options) {
const Triple &TheTriple = STI.getTargetTriple();
if (TheTriple.isOSBinFormatMachO())
return new DarwinX86AsmBackend(T, MRI, STI);
if (TheTriple.isOSBinFormatMachO()) {
MachO::CPUSubTypeX86 CS =
StringSwitch<MachO::CPUSubTypeX86>(TheTriple.getArchName())
.Case("x86_64h", MachO::CPU_SUBTYPE_X86_64_H)
.Default(MachO::CPU_SUBTYPE_X86_64_ALL);
return new DarwinX86_64AsmBackend(T, MRI, STI, CS);
}
if (TheTriple.isOSWindows() && TheTriple.isOSBinFormatCOFF())
return new WindowsX86AsmBackend(T, true, STI);