1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00

Implement the first half of redundancy factoring: efficiently

splitting all the patterns under scope nodes into equality sets
based on their first node.  The second step is to rewrite the
graph info a form that exposes the sharing.  Before I do this, 
I want to redesign the Scope node.

llvm-svn: 97130
This commit is contained in:
Chris Lattner 2010-02-25 07:45:24 +00:00
parent 52ed61204b
commit ea2fcbcd28

View File

@ -12,6 +12,8 @@
//===----------------------------------------------------------------------===//
#include "DAGISelMatcher.h"
#include "llvm/ADT/DenseMap.h"
#include <vector>
using namespace llvm;
static void ContractNodes(OwningPtr<Matcher> &MatcherPtr) {
@ -63,15 +65,98 @@ static void FactorNodes(OwningPtr<Matcher> &MatcherPtr) {
return FactorNodes(N->getNextPtr());
// Okay, pull together the series of linear push nodes into a vector so we can
// inspect it more easily.
// inspect it more easily. While we're at it, bucket them up by the hash
// code of their first predicate.
SmallVector<Matcher*, 32> OptionsToMatch;
typedef DenseMap<unsigned, std::vector<Matcher*> > HashTableTy;
HashTableTy MatchersByHash;
Matcher *CurNode = N;
for (; ScopeMatcher *PMN = dyn_cast<ScopeMatcher>(CurNode);
CurNode = PMN->getNext())
OptionsToMatch.push_back(PMN->getCheck());
OptionsToMatch.push_back(CurNode);
CurNode = PMN->getNext()) {
// Factor the subexpression.
FactorNodes(PMN->getCheckPtr());
if (Matcher *Check = PMN->getCheck()) {
OptionsToMatch.push_back(Check);
MatchersByHash[Check->getHash()].push_back(Check);
}
}
if (CurNode) {
OptionsToMatch.push_back(CurNode);
MatchersByHash[CurNode->getHash()].push_back(CurNode);
}
SmallVector<Matcher*, 32> NewOptionsToMatch;
// Now that we have bucketed up things by hash code, iterate over sets of
// matchers that all start with the same node. We would like to iterate over
// the hash table, but it isn't in deterministic order, emulate this by going
// about this slightly backwards. After each set of nodes is processed, we
// remove them from MatchersByHash.
for (unsigned i = 0, e = OptionsToMatch.size();
i != e && !MatchersByHash.empty(); ++i) {
// Find the set of matchers that start with this node.
Matcher *Optn = OptionsToMatch[i];
// Find all nodes that hash to the same value. If there is no entry in the
// hash table, then we must have previously processed a node equal to this
// one.
HashTableTy::iterator DMI = MatchersByHash.find(Optn->getHash());
if (DMI == MatchersByHash.end()) continue;
std::vector<Matcher*> &HashMembers = DMI->second;
assert(!HashMembers.empty() && "Should be removed if empty");
// Check to see if this node is in HashMembers, if not it was equal to a
// previous node and removed.
std::vector<Matcher*>::iterator MemberSlot =
std::find(HashMembers.begin(), HashMembers.end(), Optn);
if (MemberSlot == HashMembers.end()) continue;
// If the node *does* exist in HashMembers, then we've confirmed that it
// hasn't been processed as equal to a previous node. Process it now, start
// by removing it from the list of hash-equal nodes.
HashMembers.erase(MemberSlot);
// Scan all of the hash members looking for ones that are equal, removing
// them from HashMembers, adding them to EqualMatchers.
SmallVector<Matcher*, 8> EqualMatchers;
// Scan the vector backwards so we're generally removing from the end to
// avoid pointless data copying.
for (unsigned i = HashMembers.size(); i != 0; --i) {
if (!HashMembers[i-1]->isEqual(Optn)) continue;
EqualMatchers.push_back(HashMembers[i-1]);
HashMembers.erase(HashMembers.begin()+i-1);
}
EqualMatchers.push_back(Optn);
// Reverse the vector so that we preserve the match ordering.
std::reverse(EqualMatchers.begin(), EqualMatchers.end());
// If HashMembers is empty at this point, then we've gotten all nodes with
// the same hash, nuke the entry in the hash table.
if (HashMembers.empty())
MatchersByHash.erase(Optn->getHash());
// Okay, we have the list of all matchers that start with the same node as
// Optn. If there is more than one in the set, we want to factor them.
if (EqualMatchers.size() == 1) {
NewOptionsToMatch.push_back(Optn);
continue;
}
// Factor these checks by pulling the first node off each entry and
// discarding it, replacing it with...
// something amazing??
// FIXME: Need to change the Scope model.
}
// Reassemble a new Scope node.
}