1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00

* Convert to use LiveVariable analysis

* Convert to use PHIElimination pass
* Don't spill values which have just been reloaded (big win reducing spills)
* Add experimental support for eliminating spills before TwoAddress
  instructions.  It currently is broken so it is #ifdef'd out.
* Use new "is terminator" flag on instructions instead of looking for
  branches and returns explicitly.

llvm-svn: 5219
This commit is contained in:
Chris Lattner 2003-01-13 00:25:40 +00:00
parent e9bef83e93
commit eb2bc51e49

View File

@ -5,16 +5,17 @@
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/Target/MachineInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "Support/Statistic.h"
#include "Support/CommandLine.h"
#include <iostream>
#include <set>
namespace {
Statistic<> NumSpilled ("ra-local", "Number of registers spilled");
@ -26,6 +27,7 @@ namespace {
const TargetMachine *TM;
MachineFunction *MF;
const MRegisterInfo *RegInfo;
LiveVariables *LV;
// StackSlotForVirtReg - Maps SSA Regs => frame index where these values are
// spilled
@ -54,12 +56,26 @@ namespace {
//
std::vector<unsigned> PhysRegsUseOrder;
// LastUserOf map - This multimap contains the set of registers that each
// key instruction is the last user of. If an instruction has an entry in
// this map, that means that the specified operands are killed after the
// instruction is executed, thus they don't need to be spilled into memory
// VirtRegModified - This bitset contains information about which virtual
// registers need to be spilled back to memory when their registers are
// scavenged. If a virtual register has simply been rematerialized, there
// is no reason to spill it to memory when we need the register back.
//
std::multimap<MachineInstr*, unsigned> LastUserOf;
std::vector<bool> VirtRegModified;
void markVirtRegModified(unsigned Reg, bool Val = true) {
assert(Reg >= MRegisterInfo::FirstVirtualRegister && "Illegal VirtReg!");
Reg -= MRegisterInfo::FirstVirtualRegister;
if (VirtRegModified.size() <= Reg) VirtRegModified.resize(Reg+1);
VirtRegModified[Reg] = Val;
}
bool isVirtRegModified(unsigned Reg) const {
assert(Reg >= MRegisterInfo::FirstVirtualRegister && "Illegal VirtReg!");
assert(Reg - MRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
&& "Illegal virtual register!");
return VirtRegModified[Reg - MRegisterInfo::FirstVirtualRegister];
}
void MarkPhysRegRecentlyUsed(unsigned Reg) {
assert(!PhysRegsUseOrder.empty() && "No registers used!");
@ -81,6 +97,13 @@ namespace {
return "Local Register Allocator";
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
if (!DisableKill)
AU.addRequired<LiveVariables>();
AU.addRequiredID(PHIEliminationID);
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
/// runOnMachineFunction - Register allocate the whole function
bool runOnMachineFunction(MachineFunction &Fn);
@ -88,19 +111,6 @@ namespace {
/// AllocateBasicBlock - Register allocate the specified basic block.
void AllocateBasicBlock(MachineBasicBlock &MBB);
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
/// in predecessor basic blocks.
void EliminatePHINodes(MachineBasicBlock &MBB);
/// CalculateLastUseOfVReg - Calculate an approximation of the killing
/// uses for the virtual registers in the function. Here we try to capture
/// registers that are defined and only used within the same basic block.
/// Because we don't have use-def chains yet, we have to do this the hard
/// way.
///
void CalculateLastUseOfVReg(MachineBasicBlock &MBB,
std::map<unsigned, MachineInstr*> &LastUseOfVReg) const;
/// areRegsEqual - This method returns true if the specified registers are
/// related to each other. To do this, it checks to see if they are equal
@ -129,39 +139,41 @@ namespace {
/// spillPhysReg - This method spills the specified physical register into
/// the virtual register slot associated with it.
//
///
void spillPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned PhysReg) {
std::map<unsigned, unsigned>::iterator PI = PhysRegsUsed.find(PhysReg);
if (PI != PhysRegsUsed.end()) { // Only spill it if it's used!
spillVirtReg(MBB, I, PI->second, PhysReg);
} else if (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg)) {
// If the selected register aliases any other registers, we must make
// sure that one of the aliases isn't alive...
for (unsigned i = 0; AliasSet[i]; ++i) {
PI = PhysRegsUsed.find(AliasSet[i]);
if (PI != PhysRegsUsed.end()) // Spill aliased register...
spillVirtReg(MBB, I, PI->second, AliasSet[i]);
}
}
}
unsigned PhysReg);
void AssignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
/// assignVirtToPhysReg - This method updates local state so that we know
/// that PhysReg is the proper container for VirtReg now. The physical
/// register must not be used for anything else when this is called.
///
void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
/// liberatePhysReg - Make sure the specified physical register is available
/// for use. If there is currently a value in it, it is either moved out of
/// the way or spilled to memory.
///
void liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned PhysReg);
/// isPhysRegAvailable - Return true if the specified physical register is
/// free and available for use. This also includes checking to see if
/// aliased registers are all free...
///
bool isPhysRegAvailable(unsigned PhysReg) const;
/// getFreeReg - Look to see if there is a free register available in the
/// specified register class. If not, return 0.
///
unsigned getFreeReg(const TargetRegisterClass *RC);
/// getFreeReg - Find a physical register to hold the specified virtual
/// getReg - Find a physical register to hold the specified virtual
/// register. If all compatible physical registers are used, this method
/// spills the last used virtual register to the stack, and uses that
/// register.
///
unsigned getFreeReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &I,
unsigned virtualReg);
unsigned getReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned VirtReg);
/// reloadVirtReg - This method loads the specified virtual register into a
/// physical register, returning the physical register chosen. This updates
@ -186,8 +198,7 @@ int RA::getStackSpaceFor(unsigned VirtReg,
return I->second; // Already has space allocated?
// Allocate a new stack object for this spill location...
int FrameIdx =
MF->getFrameInfo()->CreateStackObject(RC->getSize(), RC->getAlignment());
int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC);
// Assign the slot...
StackSlotForVirtReg.insert(I, std::make_pair(VirtReg, FrameIdx));
@ -208,6 +219,7 @@ void RA::removePhysReg(unsigned PhysReg) {
PhysRegsUseOrder.erase(It);
}
/// spillVirtReg - This method spills the value specified by PhysReg into the
/// virtual register slot specified by VirtReg. It then updates the RA data
/// structures to indicate the fact that PhysReg is now available.
@ -220,9 +232,12 @@ void RA::spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
MF->getSSARegMap()->getRegClass(VirtReg);
int FrameIndex = getStackSpaceFor(VirtReg, RegClass);
// Add move instruction(s)
RegInfo->storeRegToStackSlot(MBB, I, PhysReg, FrameIndex, RegClass);
++NumSpilled; // Update statistics
// If we need to spill this value, do so now...
if (isVirtRegModified(VirtReg)) {
// Add move instruction(s)
RegInfo->storeRegToStackSlot(MBB, I, PhysReg, FrameIndex, RegClass);
++NumSpilled; // Update statistics
}
Virt2PhysRegMap.erase(VirtReg); // VirtReg no longer available
}
@ -230,6 +245,41 @@ void RA::spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
}
/// spillPhysReg - This method spills the specified physical register into the
/// virtual register slot associated with it.
///
void RA::spillPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned PhysReg) {
std::map<unsigned, unsigned>::iterator PI = PhysRegsUsed.find(PhysReg);
if (PI != PhysRegsUsed.end()) { // Only spill it if it's used!
spillVirtReg(MBB, I, PI->second, PhysReg);
} else if (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg)) {
// If the selected register aliases any other registers, we must make
// sure that one of the aliases isn't alive...
for (unsigned i = 0; AliasSet[i]; ++i) {
PI = PhysRegsUsed.find(AliasSet[i]);
if (PI != PhysRegsUsed.end()) // Spill aliased register...
spillVirtReg(MBB, I, PI->second, AliasSet[i]);
}
}
}
/// assignVirtToPhysReg - This method updates local state so that we know
/// that PhysReg is the proper container for VirtReg now. The physical
/// register must not be used for anything else when this is called.
///
void RA::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
assert(PhysRegsUsed.find(PhysReg) == PhysRegsUsed.end() &&
"Phys reg already assigned!");
// Update information to note the fact that this register was just used, and
// it holds VirtReg.
PhysRegsUsed[PhysReg] = VirtReg;
Virt2PhysRegMap[VirtReg] = PhysReg;
PhysRegsUseOrder.push_back(PhysReg); // New use of PhysReg
}
/// isPhysRegAvailable - Return true if the specified physical register is free
/// and available for use. This also includes checking to see if aliased
/// registers are all free...
@ -247,31 +297,77 @@ bool RA::isPhysRegAvailable(unsigned PhysReg) const {
}
/// getFreeReg - Find a physical register to hold the specified virtual
/// register. If all compatible physical registers are used, this method spills
/// the last used virtual register to the stack, and uses that register.
/// getFreeReg - Look to see if there is a free register available in the
/// specified register class. If not, return 0.
///
unsigned RA::getFreeReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned VirtReg) {
const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
unsigned RA::getFreeReg(const TargetRegisterClass *RC) {
// Get iterators defining the range of registers that are valid to allocate in
// this class, which also specifies the preferred allocation order.
TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
// First check to see if we have a free register of the requested type...
unsigned PhysReg = 0;
for (; RI != RE; ++RI) {
unsigned R = *RI;
if (isPhysRegAvailable(R)) { // Is reg unused?
// Found an unused register!
PhysReg = R;
assert(PhysReg != 0 && "Cannot use register!");
break;
for (; RI != RE; ++RI)
if (isPhysRegAvailable(*RI)) { // Is reg unused?
assert(*RI != 0 && "Cannot use register!");
return *RI; // Found an unused register!
}
return 0;
}
/// liberatePhysReg - Make sure the specified physical register is available for
/// use. If there is currently a value in it, it is either moved out of the way
/// or spilled to memory.
///
void RA::liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned PhysReg) {
// FIXME: This code checks to see if a register is available, but it really
// wants to know if a reg is available BEFORE the instruction executes. If
// called after killed operands are freed, it runs the risk of reallocating a
// used operand...
#if 0
if (isPhysRegAvailable(PhysReg)) return; // Already available...
// Check to see if the register is directly used, not indirectly used through
// aliases. If aliased registers are the ones actually used, we cannot be
// sure that we will be able to save the whole thing if we do a reg-reg copy.
std::map<unsigned, unsigned>::iterator PRUI = PhysRegsUsed.find(PhysReg);
if (PRUI != PhysRegsUsed.end()) {
unsigned VirtReg = PRUI->second; // The virtual register held...
// Check to see if there is a compatible register available. If so, we can
// move the value into the new register...
//
const TargetRegisterClass *RC = RegInfo->getRegClass(PhysReg);
if (unsigned NewReg = getFreeReg(RC)) {
// Emit the code to copy the value...
RegInfo->copyRegToReg(MBB, I, NewReg, PhysReg, RC);
// Update our internal state to indicate that PhysReg is available and Reg
// isn't.
Virt2PhysRegMap.erase(VirtReg);
removePhysReg(PhysReg); // Free the physreg
// Move reference over to new register...
assignVirtToPhysReg(VirtReg, NewReg);
return;
}
}
#endif
spillPhysReg(MBB, I, PhysReg);
}
/// getReg - Find a physical register to hold the specified virtual
/// register. If all compatible physical registers are used, this method spills
/// the last used virtual register to the stack, and uses that register.
///
unsigned RA::getReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned VirtReg) {
const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
// First check to see if we have a free register of the requested type...
unsigned PhysReg = getFreeReg(RC);
// If we didn't find an unused register, scavenge one now!
if (PhysReg == 0) {
@ -309,22 +405,11 @@ unsigned RA::getFreeReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
}
// Now that we know which register we need to assign this to, do it now!
AssignVirtToPhysReg(VirtReg, PhysReg);
assignVirtToPhysReg(VirtReg, PhysReg);
return PhysReg;
}
void RA::AssignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
assert(PhysRegsUsed.find(PhysReg) == PhysRegsUsed.end() &&
"Phys reg already assigned!");
// Update information to note the fact that this register was just used, and
// it holds VirtReg.
PhysRegsUsed[PhysReg] = VirtReg;
Virt2PhysRegMap[VirtReg] = PhysReg;
PhysRegsUseOrder.push_back(PhysReg); // New use of PhysReg
}
/// reloadVirtReg - This method loads the specified virtual register into a
/// physical register, returning the physical register chosen. This updates the
/// regalloc data structures to reflect the fact that the virtual reg is now
@ -339,119 +424,19 @@ unsigned RA::reloadVirtReg(MachineBasicBlock &MBB,
return It->second; // Already have this value available!
}
unsigned PhysReg = getFreeReg(MBB, I, VirtReg);
unsigned PhysReg = getReg(MBB, I, VirtReg);
const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
int FrameIndex = getStackSpaceFor(VirtReg, RC);
markVirtRegModified(VirtReg, false); // Note that this reg was just reloaded
// Add move instruction(s)
RegInfo->loadRegFromStackSlot(MBB, I, PhysReg, FrameIndex, RC);
++NumReloaded; // Update statistics
return PhysReg;
}
/// CalculateLastUseOfVReg - Calculate an approximation of the killing uses for
/// the virtual registers in the function. Here we try to capture registers
/// that are defined and only used within the same basic block. Because we
/// don't have use-def chains yet, we have to do this the hard way.
///
void RA::CalculateLastUseOfVReg(MachineBasicBlock &MBB,
std::map<unsigned, MachineInstr*> &LastUseOfVReg) const {
// Calculate the last machine instruction in this basic block that uses the
// specified virtual register defined in this basic block.
std::map<unsigned, MachineInstr*> LastLocalUses;
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;++I){
MachineInstr *MI = *I;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &Op = MI->getOperand(i);
if (Op.isVirtualRegister()) {
if (Op.opIsDef()) { // Definition of a new virtual reg?
LastLocalUses[Op.getAllocatedRegNum()] = 0; // Record it
} else { // Use of a virtual reg.
std::map<unsigned, MachineInstr*>::iterator It =
LastLocalUses.find(Op.getAllocatedRegNum());
if (It != LastLocalUses.end()) // Local use?
It->second = MI; // Update last use
else
LastUseOfVReg[Op.getAllocatedRegNum()] = 0;
}
}
}
}
// Move local uses over... if there are any uses of a local already in the
// lastuse map, the newly inserted entry is ignored.
LastUseOfVReg.insert(LastLocalUses.begin(), LastLocalUses.end());
}
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
/// predecessor basic blocks.
///
void RA::EliminatePHINodes(MachineBasicBlock &MBB) {
const MachineInstrInfo &MII = TM->getInstrInfo();
while (MBB.front()->getOpcode() == MachineInstrInfo::PHI) {
MachineInstr *MI = MBB.front();
// Unlink the PHI node from the basic block... but don't delete the PHI yet
MBB.erase(MBB.begin());
assert(MI->getOperand(0).isVirtualRegister() &&
"PHI node doesn't write virt reg?");
unsigned virtualReg = MI->getOperand(0).getAllocatedRegNum();
for (int i = MI->getNumOperands() - 1; i >= 2; i-=2) {
MachineOperand &opVal = MI->getOperand(i-1);
// Get the MachineBasicBlock equivalent of the BasicBlock that is the
// source path the phi
MachineBasicBlock &opBlock = *MI->getOperand(i).getMachineBasicBlock();
// Check to make sure we haven't already emitted the copy for this block.
// This can happen because PHI nodes may have multiple entries for the
// same basic block. It doesn't matter which entry we use though, because
// all incoming values are guaranteed to be the same for a particular bb.
//
// Note that this is N^2 in the number of phi node entries, but since the
// # of entries is tiny, this is not a problem.
//
bool HaveNotEmitted = true;
for (int op = MI->getNumOperands() - 1; op != i; op -= 2)
if (&opBlock == MI->getOperand(op).getMachineBasicBlock()) {
HaveNotEmitted = false;
break;
}
if (HaveNotEmitted) {
MachineBasicBlock::iterator opI = opBlock.end();
MachineInstr *opMI = *--opI;
// must backtrack over ALL the branches in the previous block
while (MII.isBranch(opMI->getOpcode()) && opI != opBlock.begin())
opMI = *--opI;
// move back to the first branch instruction so new instructions
// are inserted right in front of it and not in front of a non-branch
if (!MII.isBranch(opMI->getOpcode()))
++opI;
const TargetRegisterClass *RC =
MF->getSSARegMap()->getRegClass(virtualReg);
assert(opVal.isVirtualRegister() &&
"Machine PHI Operands must all be virtual registers!");
RegInfo->copyRegToReg(opBlock, opI, virtualReg, opVal.getReg(), RC);
}
}
// really delete the PHI instruction now!
delete MI;
}
}
void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
// loop over each instruction
MachineBasicBlock::iterator I = MBB.begin();
@ -459,47 +444,14 @@ void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
MachineInstr *MI = *I;
const MachineInstrDescriptor &MID = TM->getInstrInfo().get(MI->getOpcode());
// Loop over all of the operands of the instruction, spilling registers that
// are defined, and marking explicit destinations in the PhysRegsUsed map.
// FIXME: We don't need to spill a register if this is the last use of the
// value!
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
if (MI->getOperand(i).opIsDef() &&
MI->getOperand(i).isPhysicalRegister()) {
unsigned Reg = MI->getOperand(i).getAllocatedRegNum();
spillPhysReg(MBB, I, Reg);
PhysRegsUsed[Reg] = 0; // It is free and reserved now
PhysRegsUseOrder.push_back(Reg);
}
// Loop over the implicit defs, spilling them, as above.
if (const unsigned *ImplicitDefs = MID.ImplicitDefs)
for (unsigned i = 0; ImplicitDefs[i]; ++i) {
unsigned Reg = ImplicitDefs[i];
// We don't want to spill implicit definitions if they were explicitly
// chosen. For this reason, check to see now if the register we are
// to spill has a vreg of 0.
if (PhysRegsUsed.count(Reg) && PhysRegsUsed[Reg] != 0)
spillPhysReg(MBB, I, Reg);
else if (PhysRegsUsed.count(Reg)) {
// Remove the entry from PhysRegsUseOrder to avoid having two entries!
removePhysReg(Reg);
}
PhysRegsUseOrder.push_back(Reg);
PhysRegsUsed[Reg] = 0; // It is free and reserved now
}
// Loop over the implicit uses, making sure that they are at the head of the
// use order list, so they don't get reallocated.
if (const unsigned *ImplicitUses = MID.ImplicitUses)
for (unsigned i = 0; ImplicitUses[i]; ++i)
MarkPhysRegRecentlyUsed(ImplicitUses[i]);
// Loop over all of the operands again, getting the used operands into
// registers. This has the potiential to spill incoming values if we are
// out of registers.
// Get the used operands into registers. This has the potiential to spill
// incoming values if we are out of registers.
//
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
if (MI->getOperand(i).opIsUse() &&
@ -509,17 +461,72 @@ void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
MI->SetMachineOperandReg(i, PhysSrcReg); // Assign the input register
}
if (!DisableKill) {
// If this instruction is the last user of anything in registers, kill the
// value, freeing the register being used, so it doesn't need to be
// spilled to memory.
//
for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
KE = LV->killed_end(MI); KI != KE; ++KI) {
unsigned VirtReg = KI->second;
unsigned PhysReg = VirtReg;
if (VirtReg >= MRegisterInfo::FirstVirtualRegister) {
std::map<unsigned, unsigned>::iterator I =
Virt2PhysRegMap.find(VirtReg);
assert(I != Virt2PhysRegMap.end());
PhysReg = I->second;
Virt2PhysRegMap.erase(I);
}
if (PhysReg) {
DEBUG(std::cout << "V: " << VirtReg << " P: " << PhysReg
<< " Killed by: " << *MI);
removePhysReg(PhysReg);
}
}
}
// Loop over all of the operands of the instruction, spilling registers that
// are defined, and marking explicit destinations in the PhysRegsUsed map.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
if ((MI->getOperand(i).opIsDef() || MI->getOperand(i).opIsDefAndUse()) &&
MI->getOperand(i).isPhysicalRegister()) {
unsigned Reg = MI->getOperand(i).getAllocatedRegNum();
spillPhysReg(MBB, I, Reg); // Spill any existing value in the reg
PhysRegsUsed[Reg] = 0; // It is free and reserved now
PhysRegsUseOrder.push_back(Reg);
}
// Loop over the implicit defs, spilling them as well.
if (const unsigned *ImplicitDefs = MID.ImplicitDefs)
for (unsigned i = 0; ImplicitDefs[i]; ++i) {
unsigned Reg = ImplicitDefs[i];
spillPhysReg(MBB, I, Reg);
PhysRegsUseOrder.push_back(Reg);
PhysRegsUsed[Reg] = 0; // It is free and reserved now
}
// Okay, we have allocated all of the source operands and spilled any values
// that would be destroyed by defs of this instruction. Loop over the
// implicit defs and assign them to a register, spilling the incoming value
// if we need to scavange a register.
// implicit defs and assign them to a register, spilling incoming values if
// we need to scavenge a register.
//
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
if (MI->getOperand(i).opIsDef() &&
!MI->getOperand(i).isPhysicalRegister()) {
MI->getOperand(i).isVirtualRegister()) {
unsigned DestVirtReg = MI->getOperand(i).getAllocatedRegNum();
unsigned DestPhysReg;
// If DestVirtReg already has a value, forget about it. Why doesn't
// getReg do this right?
std::map<unsigned, unsigned>::iterator DestI =
Virt2PhysRegMap.find(DestVirtReg);
if (DestI != Virt2PhysRegMap.end()) {
unsigned PhysReg = DestI->second;
Virt2PhysRegMap.erase(DestI);
removePhysReg(PhysReg);
}
if (TM->getInstrInfo().isTwoAddrInstr(MI->getOpcode()) && i == 0) {
// must be same register number as the first operand
// This maps a = b + c into b += c, and saves b into a's spot
@ -529,51 +536,56 @@ void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
"Two address instruction invalid!");
DestPhysReg = MI->getOperand(1).getAllocatedRegNum();
// Spill the incoming value, because we are about to change the
// register contents.
spillPhysReg(MBB, I, DestPhysReg);
AssignVirtToPhysReg(DestVirtReg, DestPhysReg);
liberatePhysReg(MBB, I, DestPhysReg);
assignVirtToPhysReg(DestVirtReg, DestPhysReg);
} else {
DestPhysReg = getFreeReg(MBB, I, DestVirtReg);
DestPhysReg = getReg(MBB, I, DestVirtReg);
}
markVirtRegModified(DestVirtReg);
MI->SetMachineOperandReg(i, DestPhysReg); // Assign the output register
}
if (!DisableKill) {
// If this instruction is the last user of anything in registers, kill the
// value, freeing the register being used, so it doesn't need to be
// spilled to memory at the end of the block.
std::multimap<MachineInstr*, unsigned>::iterator LUOI =
LastUserOf.lower_bound(MI);
for (; LUOI != LastUserOf.end() && LUOI->first == MI; ++MI) {
unsigned VirtReg = LUOI->second; // entry found?
unsigned PhysReg = Virt2PhysRegMap[VirtReg];
if (PhysReg) {
DEBUG(std::cout << "V: " << VirtReg << " P: " << PhysReg
<< " Last use of: " << *MI);
removePhysReg(PhysReg);
}
Virt2PhysRegMap.erase(VirtReg);
// If this instruction defines any registers that are immediately dead,
// kill them now.
//
for (LiveVariables::killed_iterator KI = LV->dead_begin(MI),
KE = LV->dead_end(MI); KI != KE; ++KI) {
unsigned VirtReg = KI->second;
unsigned PhysReg = VirtReg;
if (VirtReg >= MRegisterInfo::FirstVirtualRegister) {
std::map<unsigned, unsigned>::iterator I =
Virt2PhysRegMap.find(VirtReg);
assert(I != Virt2PhysRegMap.end());
PhysReg = I->second;
Virt2PhysRegMap.erase(I);
}
if (PhysReg) {
DEBUG(std::cout << "V: " << VirtReg << " P: " << PhysReg
<< " dead after: " << *MI);
removePhysReg(PhysReg);
}
}
}
}
// Rewind the iterator to point to the first flow control instruction...
const MachineInstrInfo &MII = TM->getInstrInfo();
I = MBB.end();
do {
I = MBB.end()-1;
while (I != MBB.begin() && MII.isTerminatorInstr((*(I-1))->getOpcode()))
--I;
} while ((MII.isReturn((*I)->getOpcode()) ||
MII.isBranch((*I)->getOpcode())) && I != MBB.begin());
if (!MII.isReturn((*I)->getOpcode()) && !MII.isBranch((*I)->getOpcode()))
++I;
// Spill all physical registers holding virtual registers now.
while (!PhysRegsUsed.empty())
spillVirtReg(MBB, I, PhysRegsUsed.begin()->second,
PhysRegsUsed.begin()->first);
for (std::map<unsigned, unsigned>::iterator I = Virt2PhysRegMap.begin(),
E = Virt2PhysRegMap.end(); I != E; ++I)
std::cerr << "Register still mapped: " << I->first << " -> "
<< I->second << "\n";
assert(Virt2PhysRegMap.empty() && "Virtual registers still in phys regs?");
assert(PhysRegsUseOrder.empty() && "Physical regs still allocated?");
}
@ -587,38 +599,16 @@ bool RA::runOnMachineFunction(MachineFunction &Fn) {
TM = &Fn.getTarget();
RegInfo = TM->getRegisterInfo();
// First pass: eliminate PHI instructions by inserting copies into predecessor
// blocks, and calculate a simple approximation of killing uses for virtual
// registers.
//
std::map<unsigned, MachineInstr*> LastUseOfVReg;
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB) {
if (!DisableKill)
CalculateLastUseOfVReg(*MBB, LastUseOfVReg);
EliminatePHINodes(*MBB);
}
// At this point LastUseOfVReg has been filled in to contain the last
// MachineInstr user of the specified virtual register, if that user is
// within the same basic block as the definition (otherwise it contains
// null). Invert this mapping now:
if (!DisableKill)
for (std::map<unsigned, MachineInstr*>::iterator I = LastUseOfVReg.begin(),
E = LastUseOfVReg.end(); I != E; ++I)
if (I->second)
LastUserOf.insert(std::make_pair(I->second, I->first));
// We're done with the temporary list now.
LastUseOfVReg.clear();
LV = &getAnalysis<LiveVariables>();
// Loop over all of the basic blocks, eliminating virtual register references
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB)
AllocateBasicBlock(*MBB);
LastUserOf.clear();
StackSlotForVirtReg.clear();
VirtRegModified.clear();
return true;
}