mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 11:13:28 +01:00
Move InstrSelection into lib/Target/Sparc, as it's sparc specific
llvm-svn: 10730
This commit is contained in:
parent
3a7b85a77b
commit
ebe5eeb151
@ -1,336 +0,0 @@
|
||||
//===-- InstrForest.cpp - Build instruction forest for inst selection -----===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The key goal is to group instructions into a single
|
||||
// tree if one or more of them might be potentially combined into a single
|
||||
// complex instruction in the target machine.
|
||||
// Since this grouping is completely machine-independent, we do it as
|
||||
// aggressive as possible to exploit any possible target instructions.
|
||||
// In particular, we group two instructions O and I if:
|
||||
// (1) Instruction O computes an operand used by instruction I,
|
||||
// and (2) O and I are part of the same basic block,
|
||||
// and (3) O has only a single use, viz., I.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Constant.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/iTerminators.h"
|
||||
#include "llvm/iMemory.h"
|
||||
#include "llvm/Type.h"
|
||||
#include "llvm/CodeGen/InstrForest.h"
|
||||
#include "llvm/CodeGen/MachineCodeForInstruction.h"
|
||||
#include "llvm/CodeGen/MachineInstr.h"
|
||||
#include "Support/STLExtras.h"
|
||||
#include "Config/alloca.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
//------------------------------------------------------------------------
|
||||
// class InstrTreeNode
|
||||
//------------------------------------------------------------------------
|
||||
|
||||
void
|
||||
InstrTreeNode::dump(int dumpChildren, int indent) const {
|
||||
dumpNode(indent);
|
||||
|
||||
if (dumpChildren) {
|
||||
if (LeftChild)
|
||||
LeftChild->dump(dumpChildren, indent+1);
|
||||
if (RightChild)
|
||||
RightChild->dump(dumpChildren, indent+1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
InstructionNode::InstructionNode(Instruction* I)
|
||||
: InstrTreeNode(NTInstructionNode, I), codeIsFoldedIntoParent(false)
|
||||
{
|
||||
opLabel = I->getOpcode();
|
||||
|
||||
// Distinguish special cases of some instructions such as Ret and Br
|
||||
//
|
||||
if (opLabel == Instruction::Ret && cast<ReturnInst>(I)->getReturnValue()) {
|
||||
opLabel = RetValueOp; // ret(value) operation
|
||||
}
|
||||
else if (opLabel ==Instruction::Br && !cast<BranchInst>(I)->isUnconditional())
|
||||
{
|
||||
opLabel = BrCondOp; // br(cond) operation
|
||||
} else if (opLabel >= Instruction::SetEQ && opLabel <= Instruction::SetGT) {
|
||||
opLabel = SetCCOp; // common label for all SetCC ops
|
||||
} else if (opLabel == Instruction::Alloca && I->getNumOperands() > 0) {
|
||||
opLabel = AllocaN; // Alloca(ptr, N) operation
|
||||
} else if (opLabel == Instruction::GetElementPtr &&
|
||||
cast<GetElementPtrInst>(I)->hasIndices()) {
|
||||
opLabel = opLabel + 100; // getElem with index vector
|
||||
} else if (opLabel == Instruction::Xor &&
|
||||
BinaryOperator::isNot(I)) {
|
||||
opLabel = (I->getType() == Type::BoolTy)? NotOp // boolean Not operator
|
||||
: BNotOp; // bitwise Not operator
|
||||
} else if (opLabel == Instruction::And || opLabel == Instruction::Or ||
|
||||
opLabel == Instruction::Xor) {
|
||||
// Distinguish bitwise operators from logical operators!
|
||||
if (I->getType() != Type::BoolTy)
|
||||
opLabel = opLabel + 100; // bitwise operator
|
||||
} else if (opLabel == Instruction::Cast) {
|
||||
const Type *ITy = I->getType();
|
||||
switch(ITy->getPrimitiveID())
|
||||
{
|
||||
case Type::BoolTyID: opLabel = ToBoolTy; break;
|
||||
case Type::UByteTyID: opLabel = ToUByteTy; break;
|
||||
case Type::SByteTyID: opLabel = ToSByteTy; break;
|
||||
case Type::UShortTyID: opLabel = ToUShortTy; break;
|
||||
case Type::ShortTyID: opLabel = ToShortTy; break;
|
||||
case Type::UIntTyID: opLabel = ToUIntTy; break;
|
||||
case Type::IntTyID: opLabel = ToIntTy; break;
|
||||
case Type::ULongTyID: opLabel = ToULongTy; break;
|
||||
case Type::LongTyID: opLabel = ToLongTy; break;
|
||||
case Type::FloatTyID: opLabel = ToFloatTy; break;
|
||||
case Type::DoubleTyID: opLabel = ToDoubleTy; break;
|
||||
case Type::ArrayTyID: opLabel = ToArrayTy; break;
|
||||
case Type::PointerTyID: opLabel = ToPointerTy; break;
|
||||
default:
|
||||
// Just use `Cast' opcode otherwise. It's probably ignored.
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
InstructionNode::dumpNode(int indent) const {
|
||||
for (int i=0; i < indent; i++)
|
||||
std::cerr << " ";
|
||||
std::cerr << getInstruction()->getOpcodeName()
|
||||
<< " [label " << getOpLabel() << "]" << "\n";
|
||||
}
|
||||
|
||||
void
|
||||
VRegListNode::dumpNode(int indent) const {
|
||||
for (int i=0; i < indent; i++)
|
||||
std::cerr << " ";
|
||||
|
||||
std::cerr << "List" << "\n";
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
VRegNode::dumpNode(int indent) const {
|
||||
for (int i=0; i < indent; i++)
|
||||
std::cerr << " ";
|
||||
|
||||
std::cerr << "VReg " << getValue() << "\t(type "
|
||||
<< (int) getValue()->getValueType() << ")" << "\n";
|
||||
}
|
||||
|
||||
void
|
||||
ConstantNode::dumpNode(int indent) const {
|
||||
for (int i=0; i < indent; i++)
|
||||
std::cerr << " ";
|
||||
|
||||
std::cerr << "Constant " << getValue() << "\t(type "
|
||||
<< (int) getValue()->getValueType() << ")" << "\n";
|
||||
}
|
||||
|
||||
void LabelNode::dumpNode(int indent) const {
|
||||
for (int i=0; i < indent; i++)
|
||||
std::cerr << " ";
|
||||
|
||||
std::cerr << "Label " << getValue() << "\n";
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------
|
||||
// class InstrForest
|
||||
//
|
||||
// A forest of instruction trees, usually for a single method.
|
||||
//------------------------------------------------------------------------
|
||||
|
||||
InstrForest::InstrForest(Function *F) {
|
||||
for (Function::iterator BB = F->begin(), FE = F->end(); BB != FE; ++BB) {
|
||||
for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
||||
buildTreeForInstruction(I);
|
||||
}
|
||||
}
|
||||
|
||||
InstrForest::~InstrForest() {
|
||||
for_each(treeRoots.begin(), treeRoots.end(), deleter<InstructionNode>);
|
||||
}
|
||||
|
||||
void InstrForest::dump() const {
|
||||
for (const_root_iterator I = roots_begin(); I != roots_end(); ++I)
|
||||
(*I)->dump(/*dumpChildren*/ 1, /*indent*/ 0);
|
||||
}
|
||||
|
||||
inline void InstrForest::eraseRoot(InstructionNode* node) {
|
||||
for (RootSet::reverse_iterator RI=treeRoots.rbegin(), RE=treeRoots.rend();
|
||||
RI != RE; ++RI)
|
||||
if (*RI == node)
|
||||
treeRoots.erase(RI.base()-1);
|
||||
}
|
||||
|
||||
inline void InstrForest::noteTreeNodeForInstr(Instruction *instr,
|
||||
InstructionNode *treeNode) {
|
||||
(*this)[instr] = treeNode;
|
||||
treeRoots.push_back(treeNode); // mark node as root of a new tree
|
||||
}
|
||||
|
||||
|
||||
inline void InstrForest::setLeftChild(InstrTreeNode *parent,
|
||||
InstrTreeNode *child) {
|
||||
parent->LeftChild = child;
|
||||
child->Parent = parent;
|
||||
if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child))
|
||||
eraseRoot(instrNode); // no longer a tree root
|
||||
}
|
||||
|
||||
inline void InstrForest::setRightChild(InstrTreeNode *parent,
|
||||
InstrTreeNode *child) {
|
||||
parent->RightChild = child;
|
||||
child->Parent = parent;
|
||||
if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child))
|
||||
eraseRoot(instrNode); // no longer a tree root
|
||||
}
|
||||
|
||||
|
||||
InstructionNode* InstrForest::buildTreeForInstruction(Instruction *instr) {
|
||||
InstructionNode *treeNode = getTreeNodeForInstr(instr);
|
||||
if (treeNode) {
|
||||
// treeNode has already been constructed for this instruction
|
||||
assert(treeNode->getInstruction() == instr);
|
||||
return treeNode;
|
||||
}
|
||||
|
||||
// Otherwise, create a new tree node for this instruction.
|
||||
//
|
||||
treeNode = new InstructionNode(instr);
|
||||
noteTreeNodeForInstr(instr, treeNode);
|
||||
|
||||
if (instr->getOpcode() == Instruction::Call) {
|
||||
// Operands of call instruction
|
||||
return treeNode;
|
||||
}
|
||||
|
||||
// If the instruction has more than 2 instruction operands,
|
||||
// then we need to create artificial list nodes to hold them.
|
||||
// (Note that we only count operands that get tree nodes, and not
|
||||
// others such as branch labels for a branch or switch instruction.)
|
||||
//
|
||||
// To do this efficiently, we'll walk all operands, build treeNodes
|
||||
// for all appropriate operands and save them in an array. We then
|
||||
// insert children at the end, creating list nodes where needed.
|
||||
// As a performance optimization, allocate a child array only
|
||||
// if a fixed array is too small.
|
||||
//
|
||||
int numChildren = 0;
|
||||
InstrTreeNode** childArray = new InstrTreeNode*[instr->getNumOperands()];
|
||||
|
||||
//
|
||||
// Walk the operands of the instruction
|
||||
//
|
||||
for (Instruction::op_iterator O = instr->op_begin(); O!=instr->op_end(); ++O)
|
||||
{
|
||||
Value* operand = *O;
|
||||
|
||||
// Check if the operand is a data value, not an branch label, type,
|
||||
// method or module. If the operand is an address type (i.e., label
|
||||
// or method) that is used in an non-branching operation, e.g., `add'.
|
||||
// that should be considered a data value.
|
||||
|
||||
// Check latter condition here just to simplify the next IF.
|
||||
bool includeAddressOperand =
|
||||
(isa<BasicBlock>(operand) || isa<Function>(operand))
|
||||
&& !instr->isTerminator();
|
||||
|
||||
if (includeAddressOperand || isa<Instruction>(operand) ||
|
||||
isa<Constant>(operand) || isa<Argument>(operand) ||
|
||||
isa<GlobalVariable>(operand))
|
||||
{
|
||||
// This operand is a data value
|
||||
|
||||
// An instruction that computes the incoming value is added as a
|
||||
// child of the current instruction if:
|
||||
// the value has only a single use
|
||||
// AND both instructions are in the same basic block.
|
||||
// AND the current instruction is not a PHI (because the incoming
|
||||
// value is conceptually in a predecessor block,
|
||||
// even though it may be in the same static block)
|
||||
//
|
||||
// (Note that if the value has only a single use (viz., `instr'),
|
||||
// the def of the value can be safely moved just before instr
|
||||
// and therefore it is safe to combine these two instructions.)
|
||||
//
|
||||
// In all other cases, the virtual register holding the value
|
||||
// is used directly, i.e., made a child of the instruction node.
|
||||
//
|
||||
InstrTreeNode* opTreeNode;
|
||||
if (isa<Instruction>(operand) && operand->hasOneUse() &&
|
||||
cast<Instruction>(operand)->getParent() == instr->getParent() &&
|
||||
instr->getOpcode() != Instruction::PHI &&
|
||||
instr->getOpcode() != Instruction::Call)
|
||||
{
|
||||
// Recursively create a treeNode for it.
|
||||
opTreeNode = buildTreeForInstruction((Instruction*)operand);
|
||||
} else if (Constant *CPV = dyn_cast<Constant>(operand)) {
|
||||
// Create a leaf node for a constant
|
||||
opTreeNode = new ConstantNode(CPV);
|
||||
} else {
|
||||
// Create a leaf node for the virtual register
|
||||
opTreeNode = new VRegNode(operand);
|
||||
}
|
||||
|
||||
childArray[numChildren++] = opTreeNode;
|
||||
}
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------
|
||||
// Add any selected operands as children in the tree.
|
||||
// Certain instructions can have more than 2 in some instances (viz.,
|
||||
// a CALL or a memory access -- LOAD, STORE, and GetElemPtr -- to an
|
||||
// array or struct). Make the operands of every such instruction into
|
||||
// a right-leaning binary tree with the operand nodes at the leaves
|
||||
// and VRegList nodes as internal nodes.
|
||||
//--------------------------------------------------------------------
|
||||
|
||||
InstrTreeNode *parent = treeNode;
|
||||
|
||||
if (numChildren > 2) {
|
||||
unsigned instrOpcode = treeNode->getInstruction()->getOpcode();
|
||||
assert(instrOpcode == Instruction::PHI ||
|
||||
instrOpcode == Instruction::Call ||
|
||||
instrOpcode == Instruction::Load ||
|
||||
instrOpcode == Instruction::Store ||
|
||||
instrOpcode == Instruction::GetElementPtr);
|
||||
}
|
||||
|
||||
// Insert the first child as a direct child
|
||||
if (numChildren >= 1)
|
||||
setLeftChild(parent, childArray[0]);
|
||||
|
||||
int n;
|
||||
|
||||
// Create a list node for children 2 .. N-1, if any
|
||||
for (n = numChildren-1; n >= 2; n--) {
|
||||
// We have more than two children
|
||||
InstrTreeNode *listNode = new VRegListNode();
|
||||
setRightChild(parent, listNode);
|
||||
setLeftChild(listNode, childArray[numChildren - n]);
|
||||
parent = listNode;
|
||||
}
|
||||
|
||||
// Now insert the last remaining child (if any).
|
||||
if (numChildren >= 2) {
|
||||
assert(n == 1);
|
||||
setRightChild(parent, childArray[numChildren - 1]);
|
||||
}
|
||||
|
||||
delete [] childArray;
|
||||
return treeNode;
|
||||
}
|
||||
|
||||
} // End llvm namespace
|
@ -1,417 +0,0 @@
|
||||
//===- InstrSelection.cpp - Machine Independent Inst Selection Driver -----===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Machine-independent driver file for instruction selection. This file
|
||||
// constructs a forest of BURG instruction trees and then uses the
|
||||
// BURG-generated tree grammar (BURM) to find the optimal instruction sequences
|
||||
// for a given machine.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/CodeGen/InstrSelection.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/IntrinsicLowering.h"
|
||||
#include "llvm/iPHINode.h"
|
||||
#include "llvm/iOther.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/CodeGen/InstrForest.h"
|
||||
#include "llvm/CodeGen/InstrSelectionSupport.h"
|
||||
#include "llvm/CodeGen/MachineCodeForInstruction.h"
|
||||
#include "llvm/CodeGen/MachineFunction.h"
|
||||
#include "llvm/Target/TargetMachine.h"
|
||||
#include "llvm/Target/TargetRegInfo.h"
|
||||
#include "Support/CommandLine.h"
|
||||
#include "Support/LeakDetector.h"
|
||||
|
||||
namespace llvm {
|
||||
std::vector<MachineInstr*>
|
||||
FixConstantOperandsForInstr(Instruction *I, MachineInstr *MI,
|
||||
TargetMachine &TM);
|
||||
}
|
||||
|
||||
namespace {
|
||||
//===--------------------------------------------------------------------===//
|
||||
// SelectDebugLevel - Allow command line control over debugging.
|
||||
//
|
||||
enum SelectDebugLevel_t {
|
||||
Select_NoDebugInfo,
|
||||
Select_PrintMachineCode,
|
||||
Select_DebugInstTrees,
|
||||
Select_DebugBurgTrees,
|
||||
};
|
||||
|
||||
// Enable Debug Options to be specified on the command line
|
||||
cl::opt<SelectDebugLevel_t>
|
||||
SelectDebugLevel("dselect", cl::Hidden,
|
||||
cl::desc("enable instruction selection debug information"),
|
||||
cl::values(
|
||||
clEnumValN(Select_NoDebugInfo, "n", "disable debug output"),
|
||||
clEnumValN(Select_PrintMachineCode, "y", "print generated machine code"),
|
||||
clEnumValN(Select_DebugInstTrees, "i",
|
||||
"print debugging info for instruction selection"),
|
||||
clEnumValN(Select_DebugBurgTrees, "b", "print burg trees"),
|
||||
0));
|
||||
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// InstructionSelection Pass
|
||||
//
|
||||
// This is the actual pass object that drives the instruction selection
|
||||
// process.
|
||||
//
|
||||
class InstructionSelection : public FunctionPass {
|
||||
TargetMachine &Target;
|
||||
void InsertCodeForPhis(Function &F);
|
||||
void InsertPhiElimInstructions(BasicBlock *BB,
|
||||
const std::vector<MachineInstr*>& CpVec);
|
||||
void SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt);
|
||||
void PostprocessMachineCodeForTree(InstructionNode* instrNode,
|
||||
int ruleForNode, short* nts);
|
||||
public:
|
||||
InstructionSelection(TargetMachine &TM) : Target(TM) {}
|
||||
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.setPreservesCFG();
|
||||
}
|
||||
|
||||
bool runOnFunction(Function &F);
|
||||
virtual const char *getPassName() const { return "Instruction Selection"; }
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
TmpInstruction::TmpInstruction(MachineCodeForInstruction& mcfi,
|
||||
Value *s1, Value *s2, const std::string &name)
|
||||
: Instruction(s1->getType(), Instruction::UserOp1, name)
|
||||
{
|
||||
mcfi.addTemp(this);
|
||||
|
||||
Operands.push_back(Use(s1, this)); // s1 must be non-null
|
||||
if (s2)
|
||||
Operands.push_back(Use(s2, this));
|
||||
|
||||
// TmpInstructions should not be garbage checked.
|
||||
LeakDetector::removeGarbageObject(this);
|
||||
}
|
||||
|
||||
// Constructor that requires the type of the temporary to be specified.
|
||||
// Both S1 and S2 may be NULL.(
|
||||
TmpInstruction::TmpInstruction(MachineCodeForInstruction& mcfi,
|
||||
const Type *Ty, Value *s1, Value* s2,
|
||||
const std::string &name)
|
||||
: Instruction(Ty, Instruction::UserOp1, name)
|
||||
{
|
||||
mcfi.addTemp(this);
|
||||
|
||||
if (s1)
|
||||
Operands.push_back(Use(s1, this));
|
||||
if (s2)
|
||||
Operands.push_back(Use(s2, this));
|
||||
|
||||
// TmpInstructions should not be garbage checked.
|
||||
LeakDetector::removeGarbageObject(this);
|
||||
}
|
||||
|
||||
bool InstructionSelection::runOnFunction(Function &F) {
|
||||
// First pass - Walk the function, lowering any calls to intrinsic functions
|
||||
// which the instruction selector cannot handle.
|
||||
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
||||
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
|
||||
if (CallInst *CI = dyn_cast<CallInst>(I++))
|
||||
if (Function *F = CI->getCalledFunction())
|
||||
switch (F->getIntrinsicID()) {
|
||||
#undef va_start
|
||||
#undef va_copy
|
||||
#undef va_end
|
||||
case Intrinsic::not_intrinsic:
|
||||
case Intrinsic::va_start:
|
||||
case Intrinsic::va_copy:
|
||||
case Intrinsic::va_end:
|
||||
// We directly implement these intrinsics. Note that this knowledge
|
||||
// is incestuously entangled with the code in
|
||||
// SparcInstrSelection.cpp and must be updated when it is updated.
|
||||
// Since ALL of the code in this library is incestuously intertwined
|
||||
// with it already and sparc specific, we will live with this.
|
||||
break;
|
||||
default:
|
||||
// All other intrinsic calls we must lower.
|
||||
Instruction *Before = CI->getPrev();
|
||||
Target.getIntrinsicLowering().LowerIntrinsicCall(CI);
|
||||
if (Before) { // Move iterator to instruction after call
|
||||
I = Before; ++I;
|
||||
} else {
|
||||
I = BB->begin();
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Build the instruction trees to be given as inputs to BURG.
|
||||
//
|
||||
InstrForest instrForest(&F);
|
||||
|
||||
if (SelectDebugLevel >= Select_DebugInstTrees) {
|
||||
std::cerr << "\n\n*** Input to instruction selection for function "
|
||||
<< F.getName() << "\n\n" << F
|
||||
<< "\n\n*** Instruction trees for function "
|
||||
<< F.getName() << "\n\n";
|
||||
instrForest.dump();
|
||||
}
|
||||
|
||||
//
|
||||
// Invoke BURG instruction selection for each tree
|
||||
//
|
||||
for (InstrForest::const_root_iterator RI = instrForest.roots_begin();
|
||||
RI != instrForest.roots_end(); ++RI) {
|
||||
InstructionNode* basicNode = *RI;
|
||||
assert(basicNode->parent() == NULL && "A `root' node has a parent?");
|
||||
|
||||
// Invoke BURM to label each tree node with a state
|
||||
burm_label(basicNode);
|
||||
|
||||
if (SelectDebugLevel >= Select_DebugBurgTrees) {
|
||||
printcover(basicNode, 1, 0);
|
||||
std::cerr << "\nCover cost == " << treecost(basicNode, 1, 0) <<"\n\n";
|
||||
printMatches(basicNode);
|
||||
}
|
||||
|
||||
// Then recursively walk the tree to select instructions
|
||||
SelectInstructionsForTree(basicNode, /*goalnt*/1);
|
||||
}
|
||||
|
||||
//
|
||||
// Create the MachineBasicBlock records and add all of the MachineInstrs
|
||||
// defined in the MachineCodeForInstruction objects to also live in the
|
||||
// MachineBasicBlock objects.
|
||||
//
|
||||
MachineFunction &MF = MachineFunction::get(&F);
|
||||
for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
|
||||
MachineBasicBlock *MCBB = new MachineBasicBlock(BI);
|
||||
MF.getBasicBlockList().push_back(MCBB);
|
||||
|
||||
for (BasicBlock::iterator II = BI->begin(); II != BI->end(); ++II) {
|
||||
MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(II);
|
||||
MCBB->insert(MCBB->end(), mvec.begin(), mvec.end());
|
||||
}
|
||||
}
|
||||
|
||||
// Insert phi elimination code
|
||||
InsertCodeForPhis(F);
|
||||
|
||||
if (SelectDebugLevel >= Select_PrintMachineCode) {
|
||||
std::cerr << "\n*** Machine instructions after INSTRUCTION SELECTION\n";
|
||||
MachineFunction::get(&F).dump();
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
//-------------------------------------------------------------------------
|
||||
// This method inserts phi elimination code for all BBs in a method
|
||||
//-------------------------------------------------------------------------
|
||||
|
||||
void
|
||||
InstructionSelection::InsertCodeForPhis(Function &F) {
|
||||
// for all basic blocks in function
|
||||
//
|
||||
MachineFunction &MF = MachineFunction::get(&F);
|
||||
for (MachineFunction::iterator BB = MF.begin(); BB != MF.end(); ++BB) {
|
||||
for (BasicBlock::const_iterator IIt = BB->getBasicBlock()->begin();
|
||||
const PHINode *PN = dyn_cast<PHINode>(IIt); ++IIt) {
|
||||
// FIXME: This is probably wrong...
|
||||
Value *PhiCpRes = new PHINode(PN->getType(), "PhiCp:");
|
||||
|
||||
// The leak detector shouldn't track these nodes. They are not garbage,
|
||||
// even though their parent field is never filled in.
|
||||
//
|
||||
LeakDetector::removeGarbageObject(PhiCpRes);
|
||||
|
||||
// for each incoming value of the phi, insert phi elimination
|
||||
//
|
||||
for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i) {
|
||||
// insert the copy instruction to the predecessor BB
|
||||
std::vector<MachineInstr*> mvec, CpVec;
|
||||
Target.getRegInfo().cpValue2Value(PN->getIncomingValue(i), PhiCpRes,
|
||||
mvec);
|
||||
for (std::vector<MachineInstr*>::iterator MI=mvec.begin();
|
||||
MI != mvec.end(); ++MI) {
|
||||
std::vector<MachineInstr*> CpVec2 =
|
||||
FixConstantOperandsForInstr(const_cast<PHINode*>(PN), *MI, Target);
|
||||
CpVec2.push_back(*MI);
|
||||
CpVec.insert(CpVec.end(), CpVec2.begin(), CpVec2.end());
|
||||
}
|
||||
|
||||
InsertPhiElimInstructions(PN->getIncomingBlock(i), CpVec);
|
||||
}
|
||||
|
||||
std::vector<MachineInstr*> mvec;
|
||||
Target.getRegInfo().cpValue2Value(PhiCpRes, const_cast<PHINode*>(PN),
|
||||
mvec);
|
||||
BB->insert(BB->begin(), mvec.begin(), mvec.end());
|
||||
} // for each Phi Instr in BB
|
||||
} // for all BBs in function
|
||||
}
|
||||
|
||||
//-------------------------------------------------------------------------
|
||||
// Thid method inserts a copy instruction to a predecessor BB as a result
|
||||
// of phi elimination.
|
||||
//-------------------------------------------------------------------------
|
||||
|
||||
void
|
||||
InstructionSelection::InsertPhiElimInstructions(BasicBlock *BB,
|
||||
const std::vector<MachineInstr*>& CpVec)
|
||||
{
|
||||
Instruction *TermInst = (Instruction*)BB->getTerminator();
|
||||
MachineCodeForInstruction &MC4Term = MachineCodeForInstruction::get(TermInst);
|
||||
MachineInstr *FirstMIOfTerm = MC4Term.front();
|
||||
assert (FirstMIOfTerm && "No Machine Instrs for terminator");
|
||||
|
||||
MachineFunction &MF = MachineFunction::get(BB->getParent());
|
||||
|
||||
// FIXME: if PHI instructions existed in the machine code, this would be
|
||||
// unnecessary.
|
||||
MachineBasicBlock *MBB = 0;
|
||||
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
|
||||
if (I->getBasicBlock() == BB) {
|
||||
MBB = I;
|
||||
break;
|
||||
}
|
||||
|
||||
// find the position of first machine instruction generated by the
|
||||
// terminator of this BB
|
||||
MachineBasicBlock::iterator MCIt =
|
||||
std::find(MBB->begin(), MBB->end(), FirstMIOfTerm);
|
||||
|
||||
assert(MCIt != MBB->end() && "Start inst of terminator not found");
|
||||
|
||||
// insert the copy instructions just before the first machine instruction
|
||||
// generated for the terminator
|
||||
MBB->insert(MCIt, CpVec.begin(), CpVec.end());
|
||||
}
|
||||
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
// Function SelectInstructionsForTree
|
||||
//
|
||||
// Recursively walk the tree to select instructions.
|
||||
// Do this top-down so that child instructions can exploit decisions
|
||||
// made at the child instructions.
|
||||
//
|
||||
// E.g., if br(setle(reg,const)) decides the constant is 0 and uses
|
||||
// a branch-on-integer-register instruction, then the setle node
|
||||
// can use that information to avoid generating the SUBcc instruction.
|
||||
//
|
||||
// Note that this cannot be done bottom-up because setle must do this
|
||||
// only if it is a child of the branch (otherwise, the result of setle
|
||||
// may be used by multiple instructions).
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
void
|
||||
InstructionSelection::SelectInstructionsForTree(InstrTreeNode* treeRoot,
|
||||
int goalnt)
|
||||
{
|
||||
// Get the rule that matches this node.
|
||||
//
|
||||
int ruleForNode = burm_rule(treeRoot->state, goalnt);
|
||||
|
||||
if (ruleForNode == 0) {
|
||||
std::cerr << "Could not match instruction tree for instr selection\n";
|
||||
abort();
|
||||
}
|
||||
|
||||
// Get this rule's non-terminals and the corresponding child nodes (if any)
|
||||
//
|
||||
short *nts = burm_nts[ruleForNode];
|
||||
|
||||
// First, select instructions for the current node and rule.
|
||||
// (If this is a list node, not an instruction, then skip this step).
|
||||
// This function is specific to the target architecture.
|
||||
//
|
||||
if (treeRoot->opLabel != VRegListOp) {
|
||||
std::vector<MachineInstr*> minstrVec;
|
||||
|
||||
InstructionNode* instrNode = (InstructionNode*)treeRoot;
|
||||
assert(instrNode->getNodeType() == InstrTreeNode::NTInstructionNode);
|
||||
|
||||
GetInstructionsByRule(instrNode, ruleForNode, nts, Target, minstrVec);
|
||||
|
||||
MachineCodeForInstruction &mvec =
|
||||
MachineCodeForInstruction::get(instrNode->getInstruction());
|
||||
mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end());
|
||||
}
|
||||
|
||||
// Then, recursively compile the child nodes, if any.
|
||||
//
|
||||
if (nts[0]) {
|
||||
// i.e., there is at least one kid
|
||||
InstrTreeNode* kids[2];
|
||||
int currentRule = ruleForNode;
|
||||
burm_kids(treeRoot, currentRule, kids);
|
||||
|
||||
// First skip over any chain rules so that we don't visit
|
||||
// the current node again.
|
||||
//
|
||||
while (ThisIsAChainRule(currentRule)) {
|
||||
currentRule = burm_rule(treeRoot->state, nts[0]);
|
||||
nts = burm_nts[currentRule];
|
||||
burm_kids(treeRoot, currentRule, kids);
|
||||
}
|
||||
|
||||
// Now we have the first non-chain rule so we have found
|
||||
// the actual child nodes. Recursively compile them.
|
||||
//
|
||||
for (unsigned i = 0; nts[i]; i++) {
|
||||
assert(i < 2);
|
||||
InstrTreeNode::InstrTreeNodeType nodeType = kids[i]->getNodeType();
|
||||
if (nodeType == InstrTreeNode::NTVRegListNode ||
|
||||
nodeType == InstrTreeNode::NTInstructionNode)
|
||||
SelectInstructionsForTree(kids[i], nts[i]);
|
||||
}
|
||||
}
|
||||
|
||||
// Finally, do any post-processing on this node after its children
|
||||
// have been translated
|
||||
//
|
||||
if (treeRoot->opLabel != VRegListOp)
|
||||
PostprocessMachineCodeForTree((InstructionNode*)treeRoot, ruleForNode, nts);
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
// Function PostprocessMachineCodeForTree
|
||||
//
|
||||
// Apply any final cleanups to machine code for the root of a subtree
|
||||
// after selection for all its children has been completed.
|
||||
//
|
||||
void
|
||||
InstructionSelection::PostprocessMachineCodeForTree(InstructionNode* instrNode,
|
||||
int ruleForNode,
|
||||
short* nts)
|
||||
{
|
||||
// Fix up any constant operands in the machine instructions to either
|
||||
// use an immediate field or to load the constant into a register
|
||||
// Walk backwards and use direct indexes to allow insertion before current
|
||||
//
|
||||
Instruction* vmInstr = instrNode->getInstruction();
|
||||
MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(vmInstr);
|
||||
for (unsigned i = mvec.size(); i != 0; --i) {
|
||||
std::vector<MachineInstr*> loadConstVec =
|
||||
FixConstantOperandsForInstr(vmInstr, mvec[i-1], Target);
|
||||
|
||||
mvec.insert(mvec.begin()+i-1, loadConstVec.begin(), loadConstVec.end());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// createInstructionSelectionPass - Public entrypoint for instruction selection
|
||||
// and this file as a whole...
|
||||
//
|
||||
FunctionPass *llvm::createInstructionSelectionPass(TargetMachine &TM) {
|
||||
return new InstructionSelection(TM);
|
||||
}
|
@ -1,268 +0,0 @@
|
||||
//===-- InstrSelectionSupport.cpp -----------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Target-independent instruction selection code. See SparcInstrSelection.cpp
|
||||
// for usage.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/CodeGen/InstrSelectionSupport.h"
|
||||
#include "llvm/CodeGen/InstrSelection.h"
|
||||
#include "llvm/CodeGen/MachineInstrAnnot.h"
|
||||
#include "llvm/CodeGen/MachineCodeForInstruction.h"
|
||||
#include "llvm/CodeGen/InstrForest.h"
|
||||
#include "llvm/Target/TargetMachine.h"
|
||||
#include "llvm/Target/TargetRegInfo.h"
|
||||
#include "llvm/Target/TargetInstrInfo.h"
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/BasicBlock.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "../../Target/Sparc/SparcInstrSelectionSupport.h" // FIXME!
|
||||
|
||||
namespace llvm {
|
||||
|
||||
// Generate code to load the constant into a TmpInstruction (virtual reg) and
|
||||
// returns the virtual register.
|
||||
//
|
||||
static TmpInstruction*
|
||||
InsertCodeToLoadConstant(Function *F,
|
||||
Value* opValue,
|
||||
Instruction* vmInstr,
|
||||
std::vector<MachineInstr*>& loadConstVec,
|
||||
TargetMachine& target)
|
||||
{
|
||||
// Create a tmp virtual register to hold the constant.
|
||||
MachineCodeForInstruction &mcfi = MachineCodeForInstruction::get(vmInstr);
|
||||
TmpInstruction* tmpReg = new TmpInstruction(mcfi, opValue);
|
||||
|
||||
target.getInstrInfo().CreateCodeToLoadConst(target, F, opValue, tmpReg,
|
||||
loadConstVec, mcfi);
|
||||
|
||||
// Record the mapping from the tmp VM instruction to machine instruction.
|
||||
// Do this for all machine instructions that were not mapped to any
|
||||
// other temp values created by
|
||||
// tmpReg->addMachineInstruction(loadConstVec.back());
|
||||
|
||||
return tmpReg;
|
||||
}
|
||||
|
||||
|
||||
MachineOperand::MachineOperandType
|
||||
ChooseRegOrImmed(int64_t intValue,
|
||||
bool isSigned,
|
||||
MachineOpCode opCode,
|
||||
const TargetMachine& target,
|
||||
bool canUseImmed,
|
||||
unsigned int& getMachineRegNum,
|
||||
int64_t& getImmedValue)
|
||||
{
|
||||
MachineOperand::MachineOperandType opType=MachineOperand::MO_VirtualRegister;
|
||||
getMachineRegNum = 0;
|
||||
getImmedValue = 0;
|
||||
|
||||
if (canUseImmed &&
|
||||
target.getInstrInfo().constantFitsInImmedField(opCode, intValue)) {
|
||||
opType = isSigned? MachineOperand::MO_SignExtendedImmed
|
||||
: MachineOperand::MO_UnextendedImmed;
|
||||
getImmedValue = intValue;
|
||||
} else if (intValue == 0 && target.getRegInfo().getZeroRegNum() >= 0) {
|
||||
opType = MachineOperand::MO_MachineRegister;
|
||||
getMachineRegNum = target.getRegInfo().getZeroRegNum();
|
||||
}
|
||||
|
||||
return opType;
|
||||
}
|
||||
|
||||
|
||||
MachineOperand::MachineOperandType
|
||||
ChooseRegOrImmed(Value* val,
|
||||
MachineOpCode opCode,
|
||||
const TargetMachine& target,
|
||||
bool canUseImmed,
|
||||
unsigned int& getMachineRegNum,
|
||||
int64_t& getImmedValue)
|
||||
{
|
||||
getMachineRegNum = 0;
|
||||
getImmedValue = 0;
|
||||
|
||||
// To use reg or immed, constant needs to be integer, bool, or a NULL pointer
|
||||
// TargetInstrInfo::ConvertConstantToIntType() does the right conversions:
|
||||
bool isValidConstant;
|
||||
uint64_t valueToUse =
|
||||
target.getInstrInfo().ConvertConstantToIntType(target, val, val->getType(),
|
||||
isValidConstant);
|
||||
if (! isValidConstant)
|
||||
return MachineOperand::MO_VirtualRegister;
|
||||
|
||||
// Now check if the constant value fits in the IMMED field.
|
||||
//
|
||||
return ChooseRegOrImmed((int64_t) valueToUse, val->getType()->isSigned(),
|
||||
opCode, target, canUseImmed,
|
||||
getMachineRegNum, getImmedValue);
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
// Function: FixConstantOperandsForInstr
|
||||
//
|
||||
// Purpose:
|
||||
// Special handling for constant operands of a machine instruction
|
||||
// -- if the constant is 0, use the hardwired 0 register, if any;
|
||||
// -- if the constant fits in the IMMEDIATE field, use that field;
|
||||
// -- else create instructions to put the constant into a register, either
|
||||
// directly or by loading explicitly from the constant pool.
|
||||
//
|
||||
// In the first 2 cases, the operand of `minstr' is modified in place.
|
||||
// Returns a vector of machine instructions generated for operands that
|
||||
// fall under case 3; these must be inserted before `minstr'.
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
std::vector<MachineInstr*>
|
||||
FixConstantOperandsForInstr(Instruction* vmInstr,
|
||||
MachineInstr* minstr,
|
||||
TargetMachine& target)
|
||||
{
|
||||
std::vector<MachineInstr*> MVec;
|
||||
|
||||
MachineOpCode opCode = minstr->getOpCode();
|
||||
const TargetInstrInfo& instrInfo = target.getInstrInfo();
|
||||
int resultPos = instrInfo.getResultPos(opCode);
|
||||
int immedPos = instrInfo.getImmedConstantPos(opCode);
|
||||
|
||||
Function *F = vmInstr->getParent()->getParent();
|
||||
|
||||
for (unsigned op=0; op < minstr->getNumOperands(); op++)
|
||||
{
|
||||
const MachineOperand& mop = minstr->getOperand(op);
|
||||
|
||||
// Skip the result position, preallocated machine registers, or operands
|
||||
// that cannot be constants (CC regs or PC-relative displacements)
|
||||
if (resultPos == (int)op ||
|
||||
mop.getType() == MachineOperand::MO_MachineRegister ||
|
||||
mop.getType() == MachineOperand::MO_CCRegister ||
|
||||
mop.getType() == MachineOperand::MO_PCRelativeDisp)
|
||||
continue;
|
||||
|
||||
bool constantThatMustBeLoaded = false;
|
||||
unsigned int machineRegNum = 0;
|
||||
int64_t immedValue = 0;
|
||||
Value* opValue = NULL;
|
||||
MachineOperand::MachineOperandType opType =
|
||||
MachineOperand::MO_VirtualRegister;
|
||||
|
||||
// Operand may be a virtual register or a compile-time constant
|
||||
if (mop.getType() == MachineOperand::MO_VirtualRegister) {
|
||||
assert(mop.getVRegValue() != NULL);
|
||||
opValue = mop.getVRegValue();
|
||||
if (Constant *opConst = dyn_cast<Constant>(opValue)) {
|
||||
opType = ChooseRegOrImmed(opConst, opCode, target,
|
||||
(immedPos == (int)op), machineRegNum,
|
||||
immedValue);
|
||||
if (opType == MachineOperand::MO_VirtualRegister)
|
||||
constantThatMustBeLoaded = true;
|
||||
}
|
||||
} else {
|
||||
//
|
||||
// If the operand is from the constant pool, don't try to change it.
|
||||
//
|
||||
if (mop.getType() == MachineOperand::MO_ConstantPoolIndex) {
|
||||
continue;
|
||||
}
|
||||
assert(mop.isImmediate());
|
||||
bool isSigned = mop.getType() == MachineOperand::MO_SignExtendedImmed;
|
||||
|
||||
// Bit-selection flags indicate an instruction that is extracting
|
||||
// bits from its operand so ignore this even if it is a big constant.
|
||||
if (mop.isHiBits32() || mop.isLoBits32() ||
|
||||
mop.isHiBits64() || mop.isLoBits64())
|
||||
continue;
|
||||
|
||||
opType = ChooseRegOrImmed(mop.getImmedValue(), isSigned,
|
||||
opCode, target, (immedPos == (int)op),
|
||||
machineRegNum, immedValue);
|
||||
|
||||
if (opType == MachineOperand::MO_SignExtendedImmed ||
|
||||
opType == MachineOperand::MO_UnextendedImmed) {
|
||||
// The optype is an immediate value
|
||||
// This means we need to change the opcode, e.g. ADDr -> ADDi
|
||||
unsigned newOpcode = convertOpcodeFromRegToImm(opCode);
|
||||
minstr->setOpcode(newOpcode);
|
||||
}
|
||||
|
||||
if (opType == mop.getType())
|
||||
continue; // no change: this is the most common case
|
||||
|
||||
if (opType == MachineOperand::MO_VirtualRegister) {
|
||||
constantThatMustBeLoaded = true;
|
||||
opValue = isSigned
|
||||
? (Value*)ConstantSInt::get(Type::LongTy, immedValue)
|
||||
: (Value*)ConstantUInt::get(Type::ULongTy,(uint64_t)immedValue);
|
||||
}
|
||||
}
|
||||
|
||||
if (opType == MachineOperand::MO_MachineRegister)
|
||||
minstr->SetMachineOperandReg(op, machineRegNum);
|
||||
else if (opType == MachineOperand::MO_SignExtendedImmed ||
|
||||
opType == MachineOperand::MO_UnextendedImmed) {
|
||||
minstr->SetMachineOperandConst(op, opType, immedValue);
|
||||
// The optype is or has become an immediate
|
||||
// This means we need to change the opcode, e.g. ADDr -> ADDi
|
||||
unsigned newOpcode = convertOpcodeFromRegToImm(opCode);
|
||||
minstr->setOpcode(newOpcode);
|
||||
} else if (constantThatMustBeLoaded ||
|
||||
(opValue && isa<GlobalValue>(opValue)))
|
||||
{ // opValue is a constant that must be explicitly loaded into a reg
|
||||
assert(opValue);
|
||||
TmpInstruction* tmpReg = InsertCodeToLoadConstant(F, opValue, vmInstr,
|
||||
MVec, target);
|
||||
minstr->SetMachineOperandVal(op, MachineOperand::MO_VirtualRegister,
|
||||
tmpReg);
|
||||
}
|
||||
}
|
||||
|
||||
// Also, check for implicit operands used by the machine instruction
|
||||
// (no need to check those defined since they cannot be constants).
|
||||
// These include:
|
||||
// -- arguments to a Call
|
||||
// -- return value of a Return
|
||||
// Any such operand that is a constant value needs to be fixed also.
|
||||
// The current instructions with implicit refs (viz., Call and Return)
|
||||
// have no immediate fields, so the constant always needs to be loaded
|
||||
// into a register.
|
||||
//
|
||||
bool isCall = instrInfo.isCall(opCode);
|
||||
unsigned lastCallArgNum = 0; // unused if not a call
|
||||
CallArgsDescriptor* argDesc = NULL; // unused if not a call
|
||||
if (isCall)
|
||||
argDesc = CallArgsDescriptor::get(minstr);
|
||||
|
||||
for (unsigned i=0, N=minstr->getNumImplicitRefs(); i < N; ++i)
|
||||
if (isa<Constant>(minstr->getImplicitRef(i)) ||
|
||||
isa<GlobalValue>(minstr->getImplicitRef(i)))
|
||||
{
|
||||
Value* oldVal = minstr->getImplicitRef(i);
|
||||
TmpInstruction* tmpReg =
|
||||
InsertCodeToLoadConstant(F, oldVal, vmInstr, MVec, target);
|
||||
minstr->setImplicitRef(i, tmpReg);
|
||||
|
||||
if (isCall) {
|
||||
// find and replace the argument in the CallArgsDescriptor
|
||||
unsigned i=lastCallArgNum;
|
||||
while (argDesc->getArgInfo(i).getArgVal() != oldVal)
|
||||
++i;
|
||||
assert(i < argDesc->getNumArgs() &&
|
||||
"Constant operands to a call *must* be in the arg list");
|
||||
lastCallArgNum = i;
|
||||
argDesc->getArgInfo(i).replaceArgVal(tmpReg);
|
||||
}
|
||||
}
|
||||
|
||||
return MVec;
|
||||
}
|
||||
|
||||
} // End llvm namespace
|
@ -1,15 +0,0 @@
|
||||
##===- lib/CodeGen/InstrSelection/Makefile -----------------*- Makefile -*-===##
|
||||
#
|
||||
# The LLVM Compiler Infrastructure
|
||||
#
|
||||
# This file was developed by the LLVM research group and is distributed under
|
||||
# the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
#
|
||||
##===----------------------------------------------------------------------===##
|
||||
LEVEL = ../../..
|
||||
|
||||
DIRS =
|
||||
|
||||
LIBRARYNAME = select
|
||||
|
||||
include $(LEVEL)/Makefile.common
|
@ -1,4 +1,4 @@
|
||||
##===- lib/CodeGen/Makefile ------------------------------*- Makefile -*-===##
|
||||
##===- lib/CodeGen/Makefile --------------------------------*- Makefile -*-===##
|
||||
#
|
||||
# The LLVM Compiler Infrastructure
|
||||
#
|
||||
@ -6,8 +6,9 @@
|
||||
# the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
#
|
||||
##===----------------------------------------------------------------------===##
|
||||
|
||||
LEVEL = ../..
|
||||
PARALLEL_DIRS = InstrSelection InstrSched SelectionDAG
|
||||
PARALLEL_DIRS = InstrSched SelectionDAG
|
||||
LIBRARYNAME = codegen
|
||||
|
||||
include $(LEVEL)/Makefile.common
|
||||
|
Loading…
Reference in New Issue
Block a user