1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00

[APFloatTest] Add tests for various operations

Differential Revision: https://reviews.llvm.org/D27833

llvm-svn: 291189
This commit is contained in:
Tim Shen 2017-01-05 22:57:54 +00:00
parent 1e98733435
commit ecff8bd65a

View File

@ -1500,10 +1500,6 @@ TEST(APFloatTest, PPCDoubleDouble) {
EXPECT_EQ(0x3ff0000000000000ull, test.bitcastToAPInt().getRawData()[0]);
EXPECT_EQ(0x0000000000000000ull, test.bitcastToAPInt().getRawData()[1]);
test.divide(APFloat(APFloat::PPCDoubleDouble(), "3.0"), APFloat::rmNearestTiesToEven);
EXPECT_EQ(0x3fd5555555555555ull, test.bitcastToAPInt().getRawData()[0]);
EXPECT_EQ(0x3c75555555555556ull, test.bitcastToAPInt().getRawData()[1]);
// LDBL_MAX
test = APFloat(APFloat::PPCDoubleDouble(), "1.79769313486231580793728971405301e+308");
EXPECT_EQ(0x7fefffffffffffffull, test.bitcastToAPInt().getRawData()[0]);
@ -3306,4 +3302,275 @@ TEST(APFloatTest, PPCDoubleDoubleSubtract) {
.str();
}
}
TEST(APFloatTest, PPCDoubleDoubleMultiply) {
using DataType = std::tuple<uint64_t, uint64_t, uint64_t, uint64_t, uint64_t,
uint64_t, APFloat::roundingMode>;
// TODO: Only a sanity check for now. Add more edge cases when the
// double-double algorithm is implemented.
DataType Data[] = {
// 1/3 * 3 = 1.0
std::make_tuple(0x3fd5555555555555ull, 0x3c75555555555556ull,
0x4008000000000000ull, 0, 0x3ff0000000000000ull, 0,
APFloat::rmNearestTiesToEven),
};
for (auto Tp : Data) {
uint64_t Op1[2], Op2[2], Expected[2];
APFloat::roundingMode RM;
std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected[0], Expected[1], RM) = Tp;
APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1));
APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2));
A1.multiply(A2, RM);
EXPECT_EQ(Expected[0], A1.bitcastToAPInt().getRawData()[0])
<< formatv("({0:x} + {1:x}) * ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0],
Op2[1])
.str();
EXPECT_EQ(Expected[1], A1.bitcastToAPInt().getRawData()[1])
<< formatv("({0:x} + {1:x}) * ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0],
Op2[1])
.str();
}
}
TEST(APFloatTest, PPCDoubleDoubleDivide) {
using DataType = std::tuple<uint64_t, uint64_t, uint64_t, uint64_t, uint64_t,
uint64_t, APFloat::roundingMode>;
// TODO: Only a sanity check for now. Add more edge cases when the
// double-double algorithm is implemented.
DataType Data[] = {
// 1 / 3 = 1/3
std::make_tuple(0x3ff0000000000000ull, 0, 0x4008000000000000ull, 0,
0x3fd5555555555555ull, 0x3c75555555555556ull,
APFloat::rmNearestTiesToEven),
};
for (auto Tp : Data) {
uint64_t Op1[2], Op2[2], Expected[2];
APFloat::roundingMode RM;
std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected[0], Expected[1], RM) = Tp;
APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1));
APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2));
A1.divide(A2, RM);
EXPECT_EQ(Expected[0], A1.bitcastToAPInt().getRawData()[0])
<< formatv("({0:x} + {1:x}) / ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0],
Op2[1])
.str();
EXPECT_EQ(Expected[1], A1.bitcastToAPInt().getRawData()[1])
<< formatv("({0:x} + {1:x}) / ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0],
Op2[1])
.str();
}
}
TEST(APFloatTest, PPCDoubleDoubleRemainder) {
using DataType =
std::tuple<uint64_t, uint64_t, uint64_t, uint64_t, uint64_t, uint64_t>;
DataType Data[] = {
// remainder(3.0 + 3.0 << 53, 1.25 + 1.25 << 53) = (0.5 + 0.5 << 53)
std::make_tuple(0x4008000000000000ull, 0x3cb8000000000000ull,
0x3ff4000000000000ull, 0x3ca4000000000000ull,
0x3fe0000000000000ull, 0x3c90000000000000ull),
// remainder(3.0 + 3.0 << 53, 1.75 + 1.75 << 53) = (-0.5 - 0.5 << 53)
std::make_tuple(0x4008000000000000ull, 0x3cb8000000000000ull,
0x3ffc000000000000ull, 0x3cac000000000000ull,
0xbfe0000000000000ull, 0xbc90000000000000ull),
};
for (auto Tp : Data) {
uint64_t Op1[2], Op2[2], Expected[2];
std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected[0], Expected[1]) = Tp;
APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1));
APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2));
A1.remainder(A2);
EXPECT_EQ(Expected[0], A1.bitcastToAPInt().getRawData()[0])
<< formatv("remainder({0:x} + {1:x}), ({2:x} + {3:x}))", Op1[0], Op1[1],
Op2[0], Op2[1])
.str();
EXPECT_EQ(Expected[1], A1.bitcastToAPInt().getRawData()[1])
<< formatv("remainder(({0:x} + {1:x}), ({2:x} + {3:x}))", Op1[0],
Op1[1], Op2[0], Op2[1])
.str();
}
}
TEST(APFloatTest, PPCDoubleDoubleMod) {
using DataType =
std::tuple<uint64_t, uint64_t, uint64_t, uint64_t, uint64_t, uint64_t>;
DataType Data[] = {
// mod(3.0 + 3.0 << 53, 1.25 + 1.25 << 53) = (0.5 + 0.5 << 53)
std::make_tuple(0x4008000000000000ull, 0x3cb8000000000000ull,
0x3ff4000000000000ull, 0x3ca4000000000000ull,
0x3fe0000000000000ull, 0x3c90000000000000ull),
// mod(3.0 + 3.0 << 53, 1.75 + 1.75 << 53) = (1.25 + 1.25 << 53)
// 0xbc98000000000000 doesn't seem right, but it's what we currently have.
// TODO: investigate
std::make_tuple(0x4008000000000000ull, 0x3cb8000000000000ull,
0x3ffc000000000000ull, 0x3cac000000000000ull,
0x3ff4000000000001ull, 0xbc98000000000000ull),
};
for (auto Tp : Data) {
uint64_t Op1[2], Op2[2], Expected[2];
std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected[0], Expected[1]) = Tp;
APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1));
APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2));
A1.mod(A2);
EXPECT_EQ(Expected[0], A1.bitcastToAPInt().getRawData()[0])
<< formatv("fmod(({0:x} + {1:x}), ({2:x} + {3:x}))", Op1[0], Op1[1],
Op2[0], Op2[1])
.str();
EXPECT_EQ(Expected[1], A1.bitcastToAPInt().getRawData()[1])
<< formatv("fmod(({0:x} + {1:x}), ({2:x} + {3:x}))", Op1[0], Op1[1],
Op2[0], Op2[1])
.str();
}
}
TEST(APFloatTest, PPCDoubleDoubleFMA) {
// Sanity check for now.
APFloat A(APFloat::PPCDoubleDouble(), "2");
A.fusedMultiplyAdd(APFloat(APFloat::PPCDoubleDouble(), "3"),
APFloat(APFloat::PPCDoubleDouble(), "4"),
APFloat::rmNearestTiesToEven);
EXPECT_EQ(APFloat::cmpEqual,
APFloat(APFloat::PPCDoubleDouble(), "10").compare(A));
}
TEST(APFloatTest, PPCDoubleDoubleRoundToIntegral) {
{
APFloat A(APFloat::PPCDoubleDouble(), "1.5");
A.roundToIntegral(APFloat::rmNearestTiesToEven);
EXPECT_EQ(APFloat::cmpEqual,
APFloat(APFloat::PPCDoubleDouble(), "2").compare(A));
}
{
APFloat A(APFloat::PPCDoubleDouble(), "2.5");
A.roundToIntegral(APFloat::rmNearestTiesToEven);
EXPECT_EQ(APFloat::cmpEqual,
APFloat(APFloat::PPCDoubleDouble(), "2").compare(A));
}
}
TEST(APFloatTest, PPCDoubleDoubleCompare) {
using DataType =
std::tuple<uint64_t, uint64_t, uint64_t, uint64_t, APFloat::cmpResult>;
DataType Data[] = {
// (1 + 0) = (1 + 0)
std::make_tuple(0x3ff0000000000000ull, 0, 0x3ff0000000000000ull, 0,
APFloat::cmpEqual),
// (1 + 0) < (1.00...1 + 0)
std::make_tuple(0x3ff0000000000000ull, 0, 0x3ff0000000000001ull, 0,
APFloat::cmpLessThan),
// (1.00...1 + 0) > (1 + 0)
std::make_tuple(0x3ff0000000000001ull, 0, 0x3ff0000000000000ull, 0,
APFloat::cmpGreaterThan),
// (1 + 0) < (1 + epsilon)
std::make_tuple(0x3ff0000000000000ull, 0, 0x3ff0000000000001ull,
0x0000000000000001ull, APFloat::cmpLessThan),
// NaN != NaN
std::make_tuple(0x7ff8000000000000ull, 0, 0x7ff8000000000000ull, 0,
APFloat::cmpUnordered),
// (1 + 0) != NaN
std::make_tuple(0x3ff0000000000000ull, 0, 0x7ff8000000000000ull, 0,
APFloat::cmpUnordered),
// Inf = Inf
std::make_tuple(0x7ff0000000000000ull, 0, 0x7ff0000000000000ull, 0,
APFloat::cmpEqual),
};
for (auto Tp : Data) {
uint64_t Op1[2], Op2[2];
APFloat::cmpResult Expected;
std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected) = Tp;
APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1));
APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2));
EXPECT_EQ(Expected, A1.compare(A2))
<< formatv("({0:x} + {1:x}) - ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0],
Op2[1])
.str();
}
}
TEST(APFloatTest, PPCDoubleDoubleChangeSign) {
uint64_t Data[] = {
0x400f000000000000ull, 0xbcb0000000000000ull,
};
APFloat Float(APFloat::PPCDoubleDouble(), APInt(128, 2, Data));
{
APFloat Actual =
APFloat::copySign(Float, APFloat(APFloat::IEEEdouble(), "1"));
EXPECT_EQ(0x400f000000000000ull, Actual.bitcastToAPInt().getRawData()[0]);
EXPECT_EQ(0xbcb0000000000000ull, Actual.bitcastToAPInt().getRawData()[1]);
}
{
APFloat Actual =
APFloat::copySign(Float, APFloat(APFloat::IEEEdouble(), "-1"));
EXPECT_EQ(0xc00f000000000000ull, Actual.bitcastToAPInt().getRawData()[0]);
EXPECT_EQ(0x3cb0000000000000ull, Actual.bitcastToAPInt().getRawData()[1]);
}
}
TEST(APFloatTest, PPCDoubleDoubleFactories) {
{
uint64_t Data[] = {
0, 0,
};
EXPECT_EQ(APInt(128, 2, Data),
APFloat::getZero(APFloat::PPCDoubleDouble()).bitcastToAPInt());
}
{
uint64_t Data[] = {
0x0000000000000001ull, 0,
};
EXPECT_EQ(
APInt(128, 2, Data),
APFloat::getSmallest(APFloat::PPCDoubleDouble()).bitcastToAPInt());
}
{
uint64_t Data[] = {0x0360000000000000ull, 0};
EXPECT_EQ(APInt(128, 2, Data),
APFloat::getSmallestNormalized(APFloat::PPCDoubleDouble())
.bitcastToAPInt());
}
{
uint64_t Data[] = {
0x8000000000000000ull, 0x0000000000000000ull,
};
EXPECT_EQ(
APInt(128, 2, Data),
APFloat::getZero(APFloat::PPCDoubleDouble(), true).bitcastToAPInt());
}
{
uint64_t Data[] = {
0x8000000000000001ull, 0x0000000000000000ull,
};
EXPECT_EQ(APInt(128, 2, Data),
APFloat::getSmallest(APFloat::PPCDoubleDouble(), true)
.bitcastToAPInt());
}
EXPECT_EQ(0x8360000000000000ull,
APFloat::getSmallestNormalized(APFloat::PPCDoubleDouble(), true)
.bitcastToAPInt()
.getRawData()[0]);
EXPECT_EQ(0x0000000000000000ull,
APFloat::getSmallestNormalized(APFloat::PPCDoubleDouble(), true)
.getSecondFloat()
.bitcastToAPInt()
.getRawData()[0]);
EXPECT_TRUE(APFloat::getSmallest(APFloat::PPCDoubleDouble()).isSmallest());
EXPECT_TRUE(APFloat::getLargest(APFloat::PPCDoubleDouble()).isLargest());
}
}