1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 02:52:53 +02:00

[SLP] Fix regression in broadcasts caused by operand reordering patch D59973.

This patch fixes a regression caused by the operand reordering refactoring patch https://reviews.llvm.org/D59973 .
The fix changes the strategy to Splat instead of Opcode, if broadcast opportunities are found.
Please see the lit test for some examples.

Committed on behalf of @vporpo (Vasileios Porpodas)
    
Differential Revision: https://reviews.llvm.org/D62427

llvm-svn: 362613
This commit is contained in:
Dinar Temirbulatov 2019-06-05 15:26:28 +00:00
parent 18e4404610
commit ed700abffd
2 changed files with 64 additions and 34 deletions

View File

@ -917,6 +917,32 @@ public:
/// Clears the data.
void clear() { OpsVec.clear(); }
/// \Returns true if there are enough operands identical to \p Op to fill
/// the whole vector.
/// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
bool OpAPO = getData(OpIdx, Lane).APO;
for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
if (Ln == Lane)
continue;
// This is set to true if we found a candidate for broadcast at Lane.
bool FoundCandidate = false;
for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
OperandData &Data = getData(OpI, Ln);
if (Data.APO != OpAPO || Data.IsUsed)
continue;
if (Data.V == Op) {
FoundCandidate = true;
Data.IsUsed = true;
break;
}
}
if (!FoundCandidate)
return false;
}
return true;
}
public:
/// Initialize with all the operands of the instruction vector \p RootVL.
VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
@ -971,8 +997,13 @@ public:
// side.
if (isa<LoadInst>(OpLane0))
ReorderingModes[OpIdx] = ReorderingMode::Load;
else if (isa<Instruction>(OpLane0))
ReorderingModes[OpIdx] = ReorderingMode::Opcode;
else if (isa<Instruction>(OpLane0)) {
// Check if OpLane0 should be broadcast.
if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
ReorderingModes[OpIdx] = ReorderingMode::Splat;
else
ReorderingModes[OpIdx] = ReorderingMode::Opcode;
}
else if (isa<Constant>(OpLane0))
ReorderingModes[OpIdx] = ReorderingMode::Constant;
else if (isa<Argument>(OpLane0))
@ -990,9 +1021,8 @@ public:
for (int Pass = 0; Pass != 2; ++Pass) {
// Skip the second pass if the first pass did not fail.
bool StrategyFailed = false;
// Mark the operand data as free to use for all but the first pass.
if (Pass > 0)
clearUsed();
// Mark all operand data as free to use.
clearUsed();
// We keep the original operand order for the FirstLane, so reorder the
// rest of the lanes. We are visiting the nodes in a circular fashion,
// using FirstLane as the center point and increasing the radius

View File

@ -7,29 +7,31 @@
; S[2] = %v2 + %v1
; S[3] = %v1 + %v2
;
; TODO: We should broadcast %v1 and %v2
; We broadcast %v1 and %v2
;
define void @bcast_vals(i64 *%A, i64 *%B, i64 *%S) {
; CHECK-LABEL: @bcast_vals(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[A0:%.*]] = load i64, i64* [[A:%.*]], align 8
; CHECK-NEXT: [[B0:%.*]] = load i64, i64* [[B:%.*]], align 8
; CHECK-NEXT: [[TMP0:%.*]] = insertelement <2 x i64> undef, i64 [[A0]], i32 0
; CHECK-NEXT: [[TMP1:%.*]] = insertelement <2 x i64> [[TMP0]], i64 [[B0]], i32 1
; CHECK-NEXT: [[TMP2:%.*]] = sub <2 x i64> [[TMP1]], <i64 1, i64 1>
; CHECK-NEXT: [[SHUFFLE:%.*]] = shufflevector <2 x i64> [[TMP2]], <2 x i64> undef, <4 x i32> <i32 0, i32 1, i32 1, i32 0>
; CHECK-NEXT: [[TMP3:%.*]] = extractelement <4 x i64> [[SHUFFLE]], i32 1
; CHECK-NEXT: [[TMP4:%.*]] = insertelement <2 x i64> undef, i64 [[TMP3]], i32 0
; CHECK-NEXT: [[TMP5:%.*]] = extractelement <4 x i64> [[SHUFFLE]], i32 0
; CHECK-NEXT: [[TMP6:%.*]] = insertelement <2 x i64> [[TMP4]], i64 [[TMP5]], i32 1
; CHECK-NEXT: [[SHUFFLE1:%.*]] = shufflevector <2 x i64> [[TMP6]], <2 x i64> undef, <4 x i32> <i32 0, i32 1, i32 1, i32 0>
; CHECK-NEXT: [[TMP7:%.*]] = add <4 x i64> [[SHUFFLE]], [[SHUFFLE1]]
; CHECK-NEXT: [[V1:%.*]] = sub i64 [[A0]], 1
; CHECK-NEXT: [[V2:%.*]] = sub i64 [[B0]], 1
; CHECK-NEXT: [[TMP0:%.*]] = insertelement <4 x i64> undef, i64 [[V1]], i32 0
; CHECK-NEXT: [[TMP1:%.*]] = insertelement <4 x i64> [[TMP0]], i64 [[V1]], i32 1
; CHECK-NEXT: [[TMP2:%.*]] = insertelement <4 x i64> [[TMP1]], i64 [[V1]], i32 2
; CHECK-NEXT: [[TMP3:%.*]] = insertelement <4 x i64> [[TMP2]], i64 [[V1]], i32 3
; CHECK-NEXT: [[TMP4:%.*]] = insertelement <4 x i64> undef, i64 [[V2]], i32 0
; CHECK-NEXT: [[TMP5:%.*]] = insertelement <4 x i64> [[TMP4]], i64 [[V2]], i32 1
; CHECK-NEXT: [[TMP6:%.*]] = insertelement <4 x i64> [[TMP5]], i64 [[V2]], i32 2
; CHECK-NEXT: [[TMP7:%.*]] = insertelement <4 x i64> [[TMP6]], i64 [[V2]], i32 3
; CHECK-NEXT: [[TMP8:%.*]] = add <4 x i64> [[TMP3]], [[TMP7]]
; CHECK-NEXT: [[IDXS0:%.*]] = getelementptr inbounds i64, i64* [[S:%.*]], i64 0
; CHECK-NEXT: [[IDXS1:%.*]] = getelementptr inbounds i64, i64* [[S]], i64 1
; CHECK-NEXT: [[IDXS2:%.*]] = getelementptr inbounds i64, i64* [[S]], i64 2
; CHECK-NEXT: [[IDXS3:%.*]] = getelementptr inbounds i64, i64* [[S]], i64 3
; CHECK-NEXT: [[TMP8:%.*]] = bitcast i64* [[IDXS0]] to <4 x i64>*
; CHECK-NEXT: store <4 x i64> [[TMP7]], <4 x i64>* [[TMP8]], align 8
; CHECK-NEXT: [[TMP9:%.*]] = bitcast i64* [[IDXS0]] to <4 x i64>*
; CHECK-NEXT: store <4 x i64> [[TMP8]], <4 x i64>* [[TMP9]], align 8
; CHECK-NEXT: ret void
;
entry:
@ -61,7 +63,8 @@ entry:
; S[2] = %v5 + %v1
; S[3] = %v1 + %v4
;
; TODO: We should broadcast %v1.
; We broadcast %v1.
;
define void @bcast_vals2(i16 *%A, i16 *%B, i16 *%C, i16 *%D, i16 *%E, i32 *%S) {
; CHECK-LABEL: @bcast_vals2(
@ -72,25 +75,22 @@ define void @bcast_vals2(i16 *%A, i16 *%B, i16 *%C, i16 *%D, i16 *%E, i32 *%S) {
; CHECK-NEXT: [[D0:%.*]] = load i16, i16* [[D:%.*]], align 8
; CHECK-NEXT: [[E0:%.*]] = load i16, i16* [[E:%.*]], align 8
; CHECK-NEXT: [[V1:%.*]] = sext i16 [[A0]] to i32
; CHECK-NEXT: [[V2:%.*]] = sext i16 [[B0]] to i32
; CHECK-NEXT: [[V3:%.*]] = sext i16 [[C0]] to i32
; CHECK-NEXT: [[V4:%.*]] = sext i16 [[D0]] to i32
; CHECK-NEXT: [[V5:%.*]] = sext i16 [[E0]] to i32
; CHECK-NEXT: [[TMP0:%.*]] = insertelement <4 x i32> undef, i32 [[V1]], i32 0
; CHECK-NEXT: [[TMP1:%.*]] = insertelement <4 x i32> [[TMP0]], i32 [[V3]], i32 1
; CHECK-NEXT: [[TMP2:%.*]] = insertelement <4 x i32> [[TMP1]], i32 [[V5]], i32 2
; CHECK-NEXT: [[TMP3:%.*]] = insertelement <4 x i32> [[TMP2]], i32 [[V1]], i32 3
; CHECK-NEXT: [[TMP4:%.*]] = insertelement <4 x i32> undef, i32 [[V2]], i32 0
; CHECK-NEXT: [[TMP5:%.*]] = insertelement <4 x i32> [[TMP4]], i32 [[V1]], i32 1
; CHECK-NEXT: [[TMP6:%.*]] = insertelement <4 x i32> [[TMP5]], i32 [[V1]], i32 2
; CHECK-NEXT: [[TMP7:%.*]] = insertelement <4 x i32> [[TMP6]], i32 [[V4]], i32 3
; CHECK-NEXT: [[TMP8:%.*]] = add <4 x i32> [[TMP3]], [[TMP7]]
; CHECK-NEXT: [[TMP0:%.*]] = insertelement <4 x i16> undef, i16 [[B0]], i32 0
; CHECK-NEXT: [[TMP1:%.*]] = insertelement <4 x i16> [[TMP0]], i16 [[C0]], i32 1
; CHECK-NEXT: [[TMP2:%.*]] = insertelement <4 x i16> [[TMP1]], i16 [[E0]], i32 2
; CHECK-NEXT: [[TMP3:%.*]] = insertelement <4 x i16> [[TMP2]], i16 [[D0]], i32 3
; CHECK-NEXT: [[TMP4:%.*]] = sext <4 x i16> [[TMP3]] to <4 x i32>
; CHECK-NEXT: [[TMP5:%.*]] = insertelement <4 x i32> undef, i32 [[V1]], i32 0
; CHECK-NEXT: [[TMP6:%.*]] = insertelement <4 x i32> [[TMP5]], i32 [[V1]], i32 1
; CHECK-NEXT: [[TMP7:%.*]] = insertelement <4 x i32> [[TMP6]], i32 [[V1]], i32 2
; CHECK-NEXT: [[TMP8:%.*]] = insertelement <4 x i32> [[TMP7]], i32 [[V1]], i32 3
; CHECK-NEXT: [[TMP9:%.*]] = add <4 x i32> [[TMP8]], [[TMP4]]
; CHECK-NEXT: [[IDXS0:%.*]] = getelementptr inbounds i32, i32* [[S:%.*]], i64 0
; CHECK-NEXT: [[IDXS1:%.*]] = getelementptr inbounds i32, i32* [[S]], i64 1
; CHECK-NEXT: [[IDXS2:%.*]] = getelementptr inbounds i32, i32* [[S]], i64 2
; CHECK-NEXT: [[IDXS3:%.*]] = getelementptr inbounds i32, i32* [[S]], i64 3
; CHECK-NEXT: [[TMP9:%.*]] = bitcast i32* [[IDXS0]] to <4 x i32>*
; CHECK-NEXT: store <4 x i32> [[TMP8]], <4 x i32>* [[TMP9]], align 8
; CHECK-NEXT: [[TMP10:%.*]] = bitcast i32* [[IDXS0]] to <4 x i32>*
; CHECK-NEXT: store <4 x i32> [[TMP9]], <4 x i32>* [[TMP10]], align 8
; CHECK-NEXT: ret void
;
entry: