1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 03:02:36 +01:00

Cleanup some GraphTraits iteration code

Use children<> and nodes<> in appropriate places to cleanup the code.

Also, as part of the cleanup,
change the signature of DominatorTreeBase's Split.
It is a protected non-virtual member function called only twice,
both from within the class,
and the removed passed argument in both cases is '*this'.
The reason for the existence of that argument seems to be that
back before r43115 Split was a free function,
so an argument to get '*this' was needed - but now that is no longer the
case.

Patch by Yoav Ben-Shalom!

Differential Revision: https://reviews.llvm.org/D32118

llvm-svn: 300656
This commit is contained in:
Tim Shen 2017-04-19 03:22:50 +00:00
parent b972759f78
commit ed9415a1e1
6 changed files with 65 additions and 114 deletions

View File

@ -1164,9 +1164,8 @@ template <class BT> struct BlockEdgesAdder {
void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
const LoopData *OuterLoop) {
const BlockT *BB = BFI.RPOT[Irr.Node.Index];
for (auto I = Successor::child_begin(BB), E = Successor::child_end(BB);
I != E; ++I)
G.addEdge(Irr, BFI.getNode(*I), OuterLoop);
for (const auto Succ : children<const BlockT *>(BB))
G.addEdge(Irr, BFI.getNode(Succ), OuterLoop);
}
};
}
@ -1210,10 +1209,9 @@ BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
return false;
} else {
const BlockT *BB = getBlock(Node);
for (auto SI = Successor::child_begin(BB), SE = Successor::child_end(BB);
SI != SE; ++SI)
if (!addToDist(Dist, OuterLoop, Node, getNode(*SI),
getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI))))
for (const auto Succ : children<const BlockT *>(BB))
if (!addToDist(Dist, OuterLoop, Node, getNode(Succ),
getWeightFromBranchProb(BPI->getEdgeProbability(BB, Succ))))
// Irreducible backedge.
return false;
}

View File

@ -174,12 +174,10 @@ ForwardDominanceFrontierBase<BlockT>::calculate(const DomTreeT &DT,
// Visit each block only once.
if (visited.insert(currentBB).second) {
// Loop over CFG successors to calculate DFlocal[currentNode]
for (auto SI = BlockTraits::child_begin(currentBB),
SE = BlockTraits::child_end(currentBB);
SI != SE; ++SI) {
for (const auto Succ : children<BlockT *>(currentBB)) {
// Does Node immediately dominate this successor?
if (DT[*SI]->getIDom() != currentNode)
S.insert(*SI);
if (DT[Succ]->getIDom() != currentNode)
S.insert(Succ);
}
}

View File

@ -158,11 +158,8 @@ public:
/// True if terminator in the block can branch to another block that is
/// outside of the current loop.
bool isLoopExiting(const BlockT *BB) const {
typedef GraphTraits<const BlockT*> BlockTraits;
for (typename BlockTraits::ChildIteratorType SI =
BlockTraits::child_begin(BB),
SE = BlockTraits::child_end(BB); SI != SE; ++SI) {
if (!contains(*SI))
for (const auto Succ : children<const BlockT*>(BB)) {
if (!contains(Succ))
return true;
}
return false;
@ -186,11 +183,8 @@ public:
unsigned NumBackEdges = 0;
BlockT *H = getHeader();
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
for (typename InvBlockTraits::ChildIteratorType I =
InvBlockTraits::child_begin(H),
E = InvBlockTraits::child_end(H); I != E; ++I)
if (contains(*I))
for (const auto Pred : children<Inverse<BlockT*> >(H))
if (contains(Pred))
++NumBackEdges;
return NumBackEdges;
@ -249,12 +243,9 @@ public:
/// contains a branch back to the header.
void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const {
BlockT *H = getHeader();
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
for (typename InvBlockTraits::ChildIteratorType I =
InvBlockTraits::child_begin(H),
E = InvBlockTraits::child_end(H); I != E; ++I)
if (contains(*I))
LoopLatches.push_back(*I);
for (const auto Pred : children<Inverse<BlockT*>>(H))
if (contains(Pred))
LoopLatches.push_back(Pred);
}
//===--------------------------------------------------------------------===//

View File

@ -34,14 +34,11 @@ namespace llvm {
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::
getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
typedef GraphTraits<BlockT*> BlockTraits;
for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
for (typename BlockTraits::ChildIteratorType I =
BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
I != E; ++I)
if (!contains(*I)) {
for (const auto BB : blocks())
for (const auto Succ : children<BlockT*>(BB))
if (!contains(Succ)) {
// Not in current loop? It must be an exit block.
ExitingBlocks.push_back(*BI);
ExitingBlocks.push_back(BB);
break;
}
}
@ -63,14 +60,11 @@ BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::
getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
typedef GraphTraits<BlockT*> BlockTraits;
for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
for (typename BlockTraits::ChildIteratorType I =
BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
I != E; ++I)
if (!contains(*I))
for (const auto BB : blocks())
for (const auto Succ : children<BlockT*>(BB))
if (!contains(Succ))
// Not in current loop? It must be an exit block.
ExitBlocks.push_back(*I);
ExitBlocks.push_back(Succ);
}
/// getExitBlock - If getExitBlocks would return exactly one block,
@ -88,14 +82,11 @@ BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::
getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
typedef GraphTraits<BlockT*> BlockTraits;
for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
for (typename BlockTraits::ChildIteratorType I =
BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
I != E; ++I)
if (!contains(*I))
for (const auto BB : blocks())
for (const auto Succ : children<BlockT*>(BB))
if (!contains(Succ))
// Not in current loop? It must be an exit block.
ExitEdges.push_back(Edge(*BI, *I));
ExitEdges.emplace_back(BB, Succ);
}
/// getLoopPreheader - If there is a preheader for this loop, return it. A
@ -134,15 +125,11 @@ BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
// Loop over the predecessors of the header node...
BlockT *Header = getHeader();
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
for (typename InvBlockTraits::ChildIteratorType PI =
InvBlockTraits::child_begin(Header),
PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
typename InvBlockTraits::NodeRef N = *PI;
if (!contains(N)) { // If the block is not in the loop...
if (Out && Out != N)
for (const auto Pred : children<Inverse<BlockT*>>(Header)) {
if (!contains(Pred)) { // If the block is not in the loop...
if (Out && Out != Pred)
return nullptr; // Multiple predecessors outside the loop
Out = N;
Out = Pred;
}
}
@ -156,17 +143,11 @@ BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
template<class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
BlockT *Header = getHeader();
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
typename InvBlockTraits::ChildIteratorType PI =
InvBlockTraits::child_begin(Header);
typename InvBlockTraits::ChildIteratorType PE =
InvBlockTraits::child_end(Header);
BlockT *Latch = nullptr;
for (; PI != PE; ++PI) {
typename InvBlockTraits::NodeRef N = *PI;
if (contains(N)) {
for (const auto Pred : children<Inverse<BlockT*>>(Header)) {
if (contains(Pred)) {
if (Latch) return nullptr;
Latch = N;
Latch = Pred;
}
}
@ -394,11 +375,9 @@ static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT*> Backedges,
// within this subloop tree itself. Note that a predecessor may directly
// reach another subloop that is not yet discovered to be a subloop of
// this loop, which we must traverse.
for (typename InvBlockTraits::ChildIteratorType PI =
InvBlockTraits::child_begin(PredBB),
PE = InvBlockTraits::child_end(PredBB); PI != PE; ++PI) {
if (LI->getLoopFor(*PI) != Subloop)
ReverseCFGWorklist.push_back(*PI);
for (const auto Pred : children<Inverse<BlockT*>>(PredBB)) {
if (LI->getLoopFor(Pred) != Subloop)
ReverseCFGWorklist.push_back(Pred);
}
}
}
@ -482,13 +461,7 @@ analyze(const DominatorTreeBase<BlockT> &DomTree) {
SmallVector<BlockT *, 4> Backedges;
// Check each predecessor of the potential loop header.
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
for (typename InvBlockTraits::ChildIteratorType PI =
InvBlockTraits::child_begin(Header),
PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
BlockT *Backedge = *PI;
for (const auto Backedge : children<Inverse<BlockT*>>(Header)) {
// If Header dominates predBB, this is a new loop. Collect the backedges.
if (DomTree.dominates(Header, Backedge)
&& DomTree.isReachableFromEntry(Backedge)) {

View File

@ -276,32 +276,25 @@ protected:
// NewBB is split and now it has one successor. Update dominator tree to
// reflect this change.
template <class N, class GraphT>
void Split(DominatorTreeBaseByGraphTraits<GraphT> &DT,
typename GraphT::NodeRef NewBB) {
template <class N>
void Split(typename GraphTraits<N>::NodeRef NewBB) {
using GraphT = GraphTraits<N>;
using NodeRef = typename GraphT::NodeRef;
assert(std::distance(GraphT::child_begin(NewBB),
GraphT::child_end(NewBB)) == 1 &&
"NewBB should have a single successor!");
typename GraphT::NodeRef NewBBSucc = *GraphT::child_begin(NewBB);
NodeRef NewBBSucc = *GraphT::child_begin(NewBB);
std::vector<typename GraphT::NodeRef> PredBlocks;
typedef GraphTraits<Inverse<N>> InvTraits;
for (typename InvTraits::ChildIteratorType
PI = InvTraits::child_begin(NewBB),
PE = InvTraits::child_end(NewBB);
PI != PE; ++PI)
PredBlocks.push_back(*PI);
std::vector<NodeRef> PredBlocks;
for (const auto Pred : children<Inverse<N>>(NewBB))
PredBlocks.push_back(Pred);
assert(!PredBlocks.empty() && "No predblocks?");
bool NewBBDominatesNewBBSucc = true;
for (typename InvTraits::ChildIteratorType
PI = InvTraits::child_begin(NewBBSucc),
E = InvTraits::child_end(NewBBSucc);
PI != E; ++PI) {
typename InvTraits::NodeRef ND = *PI;
if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
DT.isReachableFromEntry(ND)) {
for (const auto Pred : children<Inverse<N>>(NewBBSucc)) {
if (Pred != NewBB && !dominates(NewBBSucc, Pred) &&
isReachableFromEntry(Pred)) {
NewBBDominatesNewBBSucc = false;
break;
}
@ -312,7 +305,7 @@ protected:
NodeT *NewBBIDom = nullptr;
unsigned i = 0;
for (i = 0; i < PredBlocks.size(); ++i)
if (DT.isReachableFromEntry(PredBlocks[i])) {
if (isReachableFromEntry(PredBlocks[i])) {
NewBBIDom = PredBlocks[i];
break;
}
@ -324,18 +317,18 @@ protected:
return;
for (i = i + 1; i < PredBlocks.size(); ++i) {
if (DT.isReachableFromEntry(PredBlocks[i]))
NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
if (isReachableFromEntry(PredBlocks[i]))
NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
}
// Create the new dominator tree node... and set the idom of NewBB.
DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
DomTreeNodeBase<NodeT> *NewBBNode = addNewBlock(NewBB, NewBBIDom);
// If NewBB strictly dominates other blocks, then it is now the immediate
// dominator of NewBBSucc. Update the dominator tree as appropriate.
if (NewBBDominatesNewBBSucc) {
DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
DomTreeNodeBase<NodeT> *NewBBSuccNode = getNode(NewBBSucc);
changeImmediateDominator(NewBBSuccNode, NewBBNode);
}
}
@ -379,7 +372,7 @@ public:
if (DomTreeNodes.size() != OtherDomTreeNodes.size())
return true;
for (const auto &DomTreeNode : this->DomTreeNodes) {
for (const auto &DomTreeNode : DomTreeNodes) {
NodeT *BB = DomTreeNode.first;
typename DomTreeNodeMapType::const_iterator OI =
OtherDomTreeNodes.find(BB);
@ -663,10 +656,9 @@ public:
/// tree to reflect this change.
void splitBlock(NodeT *NewBB) {
if (this->IsPostDominators)
this->Split<Inverse<NodeT *>, GraphTraits<Inverse<NodeT *>>>(*this,
NewBB);
Split<Inverse<NodeT *>>(NewBB);
else
this->Split<NodeT *, GraphTraits<NodeT *>>(*this, NewBB);
Split<NodeT *>(NewBB);
}
/// print - Convert to human readable form
@ -677,7 +669,7 @@ public:
o << "Inorder PostDominator Tree: ";
else
o << "Inorder Dominator Tree: ";
if (!this->DFSInfoValid)
if (!DFSInfoValid)
o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
o << "\n";
@ -712,12 +704,12 @@ protected:
// immediate dominator.
NodeT *IDom = getIDom(BB);
assert(IDom || this->DomTreeNodes[nullptr]);
assert(IDom || DomTreeNodes[nullptr]);
DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
// Add a new tree node for this NodeT, and link it as a child of
// IDomNode
return (this->DomTreeNodes[BB] = IDomNode->addChild(
return (DomTreeNodes[BB] = IDomNode->addChild(
llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get();
}
@ -780,7 +772,7 @@ public:
template <class FT> void recalculate(FT &F) {
typedef GraphTraits<FT *> TraitsTy;
reset();
this->Vertex.push_back(nullptr);
Vertex.push_back(nullptr);
if (!this->IsPostDominators) {
// Initialize root

View File

@ -143,10 +143,9 @@ public:
void writeNodes() {
// Loop over the graph, printing it out...
for (node_iterator I = GTraits::nodes_begin(G), E = GTraits::nodes_end(G);
I != E; ++I)
if (!isNodeHidden(*I))
writeNode(*I);
for (const auto Node : nodes<GraphType>(G))
if (!isNodeHidden(Node))
writeNode(Node);
}
bool isNodeHidden(NodeRef Node) {