1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00

Add initial support for IF-conversion. This patch implements the first 1/3,

which is the legality of the if-conversion transformation. The next step is to
implement the cost-model for the if-converted code as well as the
vectorization itself.

llvm-svn: 169152
This commit is contained in:
Nadav Rotem 2012-12-03 21:06:35 +00:00
parent a762d2c7c0
commit ee9155231b

View File

@ -80,6 +80,10 @@ static cl::opt<unsigned>
VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
cl::desc("Set the default vectorization width. Zero is autoselect."));
static cl::opt<bool>
EnableIfConversion("enable-if-conversion", cl::init(false), cl::Hidden,
cl::desc("Enable if-conversion during vectorization."));
/// We don't vectorize loops with a known constant trip count below this number.
const unsigned TinyTripCountThreshold = 16;
@ -219,16 +223,17 @@ private:
/// * Memory checks - The code in canVectorizeMemory checks if vectorization
/// will change the order of memory accesses in a way that will change the
/// correctness of the program.
/// * Scalars checks - The code in canVectorizeBlock checks for a number
/// of different conditions, such as the availability of a single induction
/// variable, that all types are supported and vectorize-able, etc.
/// This code reflects the capabilities of SingleBlockLoopVectorizer.
/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
/// checks for a number of different conditions, such as the availability of a
/// single induction variable, that all types are supported and vectorize-able,
/// etc. This code reflects the capabilities of SingleBlockLoopVectorizer.
/// This class is also used by SingleBlockLoopVectorizer for identifying
/// induction variable and the different reduction variables.
class LoopVectorizationLegality {
public:
LoopVectorizationLegality(Loop *Lp, ScalarEvolution *Se, DataLayout *Dl):
TheLoop(Lp), SE(Se), DL(Dl), Induction(0) { }
LoopVectorizationLegality(Loop *Lp, ScalarEvolution *Se, DataLayout *Dl,
DominatorTree *Dt):
TheLoop(Lp), SE(Se), DL(Dl), DT(Dt), Induction(0) { }
/// This represents the kinds of reductions that we support.
enum ReductionKind {
@ -277,7 +282,7 @@ public:
const SCEV *Sc = SE->getSCEV(Ptr);
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
assert(AR && "Invalid addrec expression");
const SCEV *Ex = SE->getExitCount(Lp, Lp->getHeader());
const SCEV *Ex = SE->getExitCount(Lp, Lp->getLoopLatch());
const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
Pointers.push_back(Ptr);
Starts.push_back(AR->getStart());
@ -334,13 +339,28 @@ private:
/// Check if a single basic block loop is vectorizable.
/// At this point we know that this is a loop with a constant trip count
/// and we only need to check individual instructions.
bool canVectorizeBlock(BasicBlock &BB);
bool canVectorizeInstrs(BasicBlock &BB);
/// When we vectorize loops we may change the order in which
/// we read and write from memory. This method checks if it is
/// legal to vectorize the code, considering only memory constrains.
/// Returns true if BB is vectorizable
bool canVectorizeMemory(BasicBlock &BB);
bool canVectorizeMemory();
/// Return true if we can vectorize this loop using the IF-conversion
/// transformation.
bool canVectorizeWithIfConvert();
/// Collect the variables that need to stay uniform after vectorization.
void collectLoopUniforms();
/// Return true if the block BB needs to be predicated in order for the loop
/// to be vectorized.
bool blockNeedsPredication(BasicBlock *BB);
/// return true if all of the instructions in the block can be speculatively
/// executed.
bool blockCanBePredicated(BasicBlock *BB);
/// Returns True, if 'Phi' is the kind of reduction variable for type
/// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
@ -359,6 +379,8 @@ private:
ScalarEvolution *SE;
/// DataLayout analysis.
DataLayout *DL;
// Dominators.
DominatorTree *DT;
// --- vectorization state --- //
@ -458,7 +480,7 @@ struct LoopVectorize : public LoopPass {
L->getHeader()->getParent()->getName() << "\"\n");
// Check if it is legal to vectorize the loop.
LoopVectorizationLegality LVL(L, SE, DL);
LoopVectorizationLegality LVL(L, SE, DL, DT);
if (!LVL.canVectorize()) {
DEBUG(dbgs() << "LV: Not vectorizing.\n");
return false;
@ -1423,41 +1445,91 @@ void SingleBlockLoopVectorizer::updateAnalysis() {
DEBUG(DT->verifyAnalysis());
}
bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
if (!EnableIfConversion)
return false;
assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
std::vector<BasicBlock*> &LoopBlocks = TheLoop->getBlocksVector();
// Collect the blocks that need predication.
for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
BasicBlock *BB = LoopBlocks[i];
// We must have at most two predecessors because we need to convert
// all PHIs to selects.
unsigned Preds = std::distance(pred_begin(BB), pred_end(BB));
if (Preds > 2)
return false;
// We must be able to predicate all blocks that needs to be predicated.
if (blockNeedsPredication(BB) && !blockCanBePredicated(BB))
return false;
}
// We can if-convert this loop.
return true;
}
bool LoopVectorizationLegality::canVectorize() {
assert(TheLoop->getLoopPreheader() && "No preheader!!");
// We can only vectorize single basic block loops.
// We can only vectorize innermost loops.
if (TheLoop->getSubLoopsVector().size())
return false;
// We must have a single backedge.
if (TheLoop->getNumBackEdges() != 1)
return false;
// We must have a single exiting block.
if (!TheLoop->getExitingBlock())
return false;
unsigned NumBlocks = TheLoop->getNumBlocks();
if (NumBlocks != 1) {
DEBUG(dbgs() << "LV: Too many blocks:" << NumBlocks << "\n");
// Check if we can if-convert non single-bb loops.
if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
return false;
}
// We need to have a loop header.
BasicBlock *BB = TheLoop->getHeader();
DEBUG(dbgs() << "LV: Found a loop: " << BB->getName() << "\n");
BasicBlock *Header = TheLoop->getHeader();
BasicBlock *Latch = TheLoop->getLoopLatch();
DEBUG(dbgs() << "LV: Found a loop: " << Header->getName() << "\n");
// ScalarEvolution needs to be able to find the exit count.
const SCEV *ExitCount = SE->getExitCount(TheLoop, BB);
const SCEV *ExitCount = SE->getExitCount(TheLoop, Latch);
if (ExitCount == SE->getCouldNotCompute()) {
DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
return false;
}
// Do not loop-vectorize loops with a tiny trip count.
unsigned TC = SE->getSmallConstantTripCount(TheLoop, BB);
unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
if (TC > 0u && TC < TinyTripCountThreshold) {
DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
"This loop is not worth vectorizing.\n");
return false;
}
// Go over each instruction and look at memory deps.
if (!canVectorizeBlock(*BB)) {
DEBUG(dbgs() << "LV: Can't vectorize this loop header\n");
// Check if we can vectorize the instructions and CFG in this loop.
if (!canVectorizeInstrs(*Header)) {
DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
return false;
}
// Go over each instruction and look at memory deps.
if (!canVectorizeMemory()) {
DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
return false;
}
// Collect all of the variables that remain uniform after vectorization.
collectLoopUniforms();
DEBUG(dbgs() << "LV: We can vectorize this loop" <<
(PtrRtCheck.Need ? " (with a runtime bound check)" : "")
<<"!\n");
@ -1468,122 +1540,138 @@ bool LoopVectorizationLegality::canVectorize() {
return true;
}
bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
bool LoopVectorizationLegality::canVectorizeInstrs(BasicBlock &BB) {
BasicBlock *PreHeader = TheLoop->getLoopPreheader();
BasicBlock *Header = TheLoop->getHeader();
// Scan the instructions in the block and look for hazards.
for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
Instruction *I = it;
// For each block in the loop
for (Loop::block_iterator bb = TheLoop->block_begin(),
be = TheLoop->block_end(); bb != be; ++bb) {
if (PHINode *Phi = dyn_cast<PHINode>(I)) {
// This should not happen because the loop should be normalized.
if (Phi->getNumIncomingValues() != 2) {
DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
// Scan the instructions in the block and look for hazards.
for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
Instruction *I = it;
if (PHINode *Phi = dyn_cast<PHINode>(I)) {
// This should not happen because the loop should be normalized.
if (Phi->getNumIncomingValues() != 2) {
DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
return false;
}
// If this PHINode is not in the header block, then we know that we
// can convert it to select during if-conversion.
if (*bb != Header) {
continue;
}
// This is the value coming from the preheader.
Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
// We only look at integer and pointer phi nodes.
if (Phi->getType()->isPointerTy() && isInductionVariable(Phi)) {
DEBUG(dbgs() << "LV: Found a pointer induction variable.\n");
Inductions[Phi] = StartValue;
continue;
} else if (!Phi->getType()->isIntegerTy()) {
DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
return false;
}
// Handle integer PHIs:
if (isInductionVariable(Phi)) {
if (Induction) {
DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n");
return false;
}
DEBUG(dbgs() << "LV: Found the induction PHI."<< *Phi <<"\n");
Induction = Phi;
Inductions[Phi] = StartValue;
continue;
}
if (AddReductionVar(Phi, IntegerAdd)) {
DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
continue;
}
if (AddReductionVar(Phi, IntegerMult)) {
DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
continue;
}
if (AddReductionVar(Phi, IntegerOr)) {
DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
continue;
}
if (AddReductionVar(Phi, IntegerAnd)) {
DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
continue;
}
if (AddReductionVar(Phi, IntegerXor)) {
DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
continue;
}
DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
return false;
}// end of PHI handling
// We still don't handle functions.
CallInst *CI = dyn_cast<CallInst>(I);
if (CI) {
DEBUG(dbgs() << "LV: Found a call site.\n");
return false;
}
// This is the value coming from the preheader.
Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
// We only look at integer and pointer phi nodes.
if (Phi->getType()->isPointerTy() && isInductionVariable(Phi)) {
DEBUG(dbgs() << "LV: Found a pointer induction variable.\n");
Inductions[Phi] = StartValue;
continue;
} else if (!Phi->getType()->isIntegerTy()) {
DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
// We do not re-vectorize vectors.
if (!VectorType::isValidElementType(I->getType()) &&
!I->getType()->isVoidTy()) {
DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
return false;
}
// Handle integer PHIs:
if (isInductionVariable(Phi)) {
if (Induction) {
DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n");
return false;
// Reduction instructions are allowed to have exit users.
// All other instructions must not have external users.
if (!AllowedExit.count(I))
//Check that all of the users of the loop are inside the BB.
for (Value::use_iterator it = I->use_begin(), e = I->use_end();
it != e; ++it) {
Instruction *U = cast<Instruction>(*it);
// This user may be a reduction exit value.
if (!TheLoop->contains(U)) {
DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
return false;
}
}
DEBUG(dbgs() << "LV: Found the induction PHI."<< *Phi <<"\n");
Induction = Phi;
Inductions[Phi] = StartValue;
continue;
}
if (AddReductionVar(Phi, IntegerAdd)) {
DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
continue;
}
if (AddReductionVar(Phi, IntegerMult)) {
DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
continue;
}
if (AddReductionVar(Phi, IntegerOr)) {
DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
continue;
}
if (AddReductionVar(Phi, IntegerAnd)) {
DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
continue;
}
if (AddReductionVar(Phi, IntegerXor)) {
DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
continue;
}
} // next instr.
DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
return false;
}// end of PHI handling
// We still don't handle functions.
CallInst *CI = dyn_cast<CallInst>(I);
if (CI) {
DEBUG(dbgs() << "LV: Found a call site.\n");
return false;
}
// We do not re-vectorize vectors.
if (!VectorType::isValidElementType(I->getType()) &&
!I->getType()->isVoidTy()) {
DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
return false;
}
// Reduction instructions are allowed to have exit users.
// All other instructions must not have external users.
if (!AllowedExit.count(I))
//Check that all of the users of the loop are inside the BB.
for (Value::use_iterator it = I->use_begin(), e = I->use_end();
it != e; ++it) {
Instruction *U = cast<Instruction>(*it);
// This user may be a reduction exit value.
BasicBlock *Parent = U->getParent();
if (Parent != &BB) {
DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
return false;
}
}
} // next instr.
}
if (!Induction) {
DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
assert(getInductionVars()->size() && "No induction variables");
}
// Don't vectorize if the memory dependencies do not allow vectorization.
if (!canVectorizeMemory(BB))
return false;
return true;
}
void LoopVectorizationLegality::collectLoopUniforms() {
// We now know that the loop is vectorizable!
// Collect variables that will remain uniform after vectorization.
std::vector<Value*> Worklist;
BasicBlock *Latch = TheLoop->getLoopLatch();
// Start with the conditional branch and walk up the block.
Worklist.push_back(BB.getTerminator()->getOperand(0));
Worklist.push_back(Latch->getTerminator()->getOperand(0));
while (Worklist.size()) {
Instruction *I = dyn_cast<Instruction>(Worklist.back());
Worklist.pop_back();
// Look at instructions inside this block. Stop when reaching PHI nodes.
if (!I || I->getParent() != &BB || isa<PHINode>(I))
// Look at instructions inside this loop.
// Stop when reaching PHI nodes.
// TODO: we need to prevent loops but we do need to follow PHIs inside this
// loop.
if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
continue;
// This is a known uniform.
@ -1594,11 +1682,9 @@ bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
Worklist.push_back(I->getOperand(i));
}
}
return true;
}
bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
bool LoopVectorizationLegality::canVectorizeMemory() {
typedef SmallVector<Value*, 16> ValueVector;
typedef SmallPtrSet<Value*, 16> ValueSet;
// Holds the Load and Store *instructions*.
@ -1607,35 +1693,40 @@ bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
PtrRtCheck.Pointers.clear();
PtrRtCheck.Need = false;
// Scan the BB and collect legal loads and stores.
for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
Instruction *I = it;
// For each block.
for (Loop::block_iterator bb = TheLoop->block_begin(),
be = TheLoop->block_end(); bb != be; ++bb) {
// If this is a load, save it. If this instruction can read from memory
// but is not a load, then we quit. Notice that we don't handle function
// calls that read or write.
if (I->mayReadFromMemory()) {
LoadInst *Ld = dyn_cast<LoadInst>(I);
if (!Ld) return false;
if (!Ld->isSimple()) {
DEBUG(dbgs() << "LV: Found a non-simple load.\n");
return false;
}
Loads.push_back(Ld);
continue;
}
// Scan the BB and collect legal loads and stores.
for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
++it) {
// Save store instructions. Abort if other instructions write to memory.
if (I->mayWriteToMemory()) {
StoreInst *St = dyn_cast<StoreInst>(I);
if (!St) return false;
if (!St->isSimple()) {
DEBUG(dbgs() << "LV: Found a non-simple store.\n");
return false;
// If this is a load, save it. If this instruction can read from memory
// but is not a load, then we quit. Notice that we don't handle function
// calls that read or write.
if (it->mayReadFromMemory()) {
LoadInst *Ld = dyn_cast<LoadInst>(it);
if (!Ld) return false;
if (!Ld->isSimple()) {
DEBUG(dbgs() << "LV: Found a non-simple load.\n");
return false;
}
Loads.push_back(Ld);
continue;
}
Stores.push_back(St);
}
} // next instr.
// Save 'store' instructions. Abort if other instructions write to memory.
if (it->mayWriteToMemory()) {
StoreInst *St = dyn_cast<StoreInst>(it);
if (!St) return false;
if (!St->isSimple()) {
DEBUG(dbgs() << "LV: Found a non-simple store.\n");
return false;
}
Stores.push_back(St);
}
} // next instr.
} // next block.
// Now we have two lists that hold the loads and the stores.
// Next, we find the pointers that they use.
@ -1908,6 +1999,34 @@ bool LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
return (C->getValue()->equalsInt(Size));
}
bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
assert(TheLoop->contains(BB) && "Unknown block used");
// Blocks that do not dominate the latch need predication.
BasicBlock* Latch = TheLoop->getLoopLatch();
return !DT->dominates(BB, Latch);
}
bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB) {
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
// We don't predicate loads/stores at the moment.
if (it->mayReadFromMemory() || it->mayWriteToMemory() || it->mayThrow())
return false;
// The isntructions below can trap.
switch (it->getOpcode()) {
default: continue;
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
return false;
}
}
return true;
}
bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) {
const SCEV *PhiScev = SE->getSCEV(Ptr);
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);