diff --git a/lib/Transforms/Scalar/LoopUnrollPass.cpp b/lib/Transforms/Scalar/LoopUnrollPass.cpp index 2c7f55d3a14..bd9da14f669 100644 --- a/lib/Transforms/Scalar/LoopUnrollPass.cpp +++ b/lib/Transforms/Scalar/LoopUnrollPass.cpp @@ -17,6 +17,7 @@ #include "llvm/Analysis/CodeMetrics.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DiagnosticInfo.h" @@ -27,6 +28,8 @@ #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/UnrollLoop.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/Analysis/InstructionSimplify.h" #include using namespace llvm; @@ -37,6 +40,11 @@ static cl::opt UnrollThreshold("unroll-threshold", cl::init(150), cl::Hidden, cl::desc("The cut-off point for automatic loop unrolling")); +static cl::opt UnrollMaxIterationsCountToAnalyze( + "unroll-max-iteration-count-to-analyze", cl::init(1000), cl::Hidden, + cl::desc("Don't allow loop unrolling to simulate more than this number of" + "iterations when checking full unroll profitability")); + static cl::opt UnrollCount("unroll-count", cl::init(0), cl::Hidden, cl::desc("Use this unroll count for all loops including those with " @@ -151,7 +159,8 @@ namespace { // unrolled loops respectively. void selectThresholds(const Loop *L, bool HasPragma, const TargetTransformInfo::UnrollingPreferences &UP, - unsigned &Threshold, unsigned &PartialThreshold) { + unsigned &Threshold, unsigned &PartialThreshold, + unsigned NumberOfSimplifiedInstructions) { // Determine the current unrolling threshold. While this is // normally set from UnrollThreshold, it is overridden to a // smaller value if the current function is marked as @@ -177,6 +186,7 @@ namespace { PartialThreshold = std::max(PartialThreshold, PragmaUnrollThreshold); } + Threshold += NumberOfSimplifiedInstructions; } }; } @@ -200,6 +210,320 @@ Pass *llvm::createSimpleLoopUnrollPass() { return llvm::createLoopUnrollPass(-1, -1, 0, 0); } +static bool IsLoadFromConstantInitializer(Value *V) { + if (GlobalVariable *GV = dyn_cast(V)) + if (GV->isConstant() && GV->hasDefinitiveInitializer()) + return GV->getInitializer(); + return false; +} + +struct FindConstantPointers { + bool LoadCanBeConstantFolded; + bool IndexIsConstant; + APInt Step; + APInt StartValue; + Value *BaseAddress; + const Loop *L; + ScalarEvolution &SE; + FindConstantPointers(const Loop *loop, ScalarEvolution &SE) + : LoadCanBeConstantFolded(true), IndexIsConstant(true), L(loop), SE(SE) {} + + bool follow(const SCEV *S) { + if (const SCEVUnknown *SC = dyn_cast(S)) { + // We've reached the leaf node of SCEV, it's most probably just a + // variable. Now it's time to see if it corresponds to a global constant + // global (in which case we can eliminate the load), or not. + BaseAddress = SC->getValue(); + LoadCanBeConstantFolded = + IndexIsConstant && IsLoadFromConstantInitializer(BaseAddress); + return false; + } + if (isa(S)) + return true; + if (const SCEVAddRecExpr *AR = dyn_cast(S)) { + // If the current SCEV expression is AddRec, and its loop isn't the loop + // we are about to unroll, then we won't get a constant address after + // unrolling, and thus, won't be able to eliminate the load. + if (AR->getLoop() != L) + return IndexIsConstant = false; + // If the step isn't constant, we won't get constant addresses in unrolled + // version. Bail out. + if (const SCEVConstant *StepSE = + dyn_cast(AR->getStepRecurrence(SE))) + Step = StepSE->getValue()->getValue(); + else + return IndexIsConstant = false; + + return IndexIsConstant; + } + // If Result is true, continue traversal. + // Otherwise, we have found something that prevents us from (possible) load + // elimination. + return IndexIsConstant; + } + bool isDone() const { return !IndexIsConstant; } +}; + +// This class is used to get an estimate of the optimization effects that we +// could get from complete loop unrolling. It comes from the fact that some +// loads might be replaced with concrete constant values and that could trigger +// a chain of instruction simplifications. +// +// E.g. we might have: +// int a[] = {0, 1, 0}; +// v = 0; +// for (i = 0; i < 3; i ++) +// v += b[i]*a[i]; +// If we completely unroll the loop, we would get: +// v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2] +// Which then will be simplified to: +// v = b[0]* 0 + b[1]* 1 + b[2]* 0 +// And finally: +// v = b[1] +class UnrollAnalyzer : public InstVisitor { + typedef InstVisitor Base; + friend class InstVisitor; + + const Loop *L; + unsigned TripCount; + ScalarEvolution &SE; + const TargetTransformInfo &TTI; + unsigned NumberOfOptimizedInstructions; + + DenseMap SimplifiedValues; + DenseMap LoadBaseAddresses; + SmallPtrSet CountedInsns; + + // Provide base case for our instruction visit. + bool visitInstruction(Instruction &I) { return false; }; + // TODO: We should also visit ICmp, FCmp, GetElementPtr, Trunc, ZExt, SExt, + // FPTrunc, FPExt, FPToUI, FPToSI, UIToFP, SIToFP, BitCast, Select, + // ExtractElement, InsertElement, ShuffleVector, ExtractValue, InsertValue. + // + // Probaly it's worth to hoist the code for estimating the simplifications + // effects to a separate class, since we have a very similar code in + // InlineCost already. + bool visitBinaryOperator(BinaryOperator &I) { + Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); + if (!isa(LHS)) + if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) + LHS = SimpleLHS; + if (!isa(RHS)) + if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) + RHS = SimpleRHS; + Value *SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS); + + if (SimpleV && CountedInsns.insert(&I).second) + NumberOfOptimizedInstructions += TTI.getUserCost(&I); + + if (Constant *C = dyn_cast_or_null(SimpleV)) { + SimplifiedValues[&I] = C; + return true; + } + return false; + } + + Constant *computeLoadValue(LoadInst *LI, unsigned Iteration) { + if (!LI) + return nullptr; + Value *BaseAddr = LoadBaseAddresses[LI]; + if (!BaseAddr) + return nullptr; + + auto GV = dyn_cast(BaseAddr); + if (!GV) + return nullptr; + + ConstantDataSequential *CDS = + dyn_cast(GV->getInitializer()); + if (!CDS) + return nullptr; + + const SCEV *BaseAddrSE = SE.getSCEV(BaseAddr); + const SCEV *S = SE.getSCEV(LI->getPointerOperand()); + const SCEV *OffSE = SE.getMinusSCEV(S, BaseAddrSE); + + APInt StepC, StartC; + const SCEVAddRecExpr *AR = dyn_cast(OffSE); + if (!AR) + return nullptr; + + if (const SCEVConstant *StepSE = + dyn_cast(AR->getStepRecurrence(SE))) + StepC = StepSE->getValue()->getValue(); + else + return nullptr; + + if (const SCEVConstant *StartSE = dyn_cast(AR->getStart())) + StartC = StartSE->getValue()->getValue(); + else + return nullptr; + + unsigned ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U; + unsigned Start = StartC.getLimitedValue(); + unsigned Step = StepC.getLimitedValue(); + + unsigned Index = (Start + Step * Iteration) / ElemSize; + if (Index >= CDS->getNumElements()) + return nullptr; + + Constant *CV = CDS->getElementAsConstant(Index); + + return CV; + } + +public: + UnrollAnalyzer(const Loop *L, unsigned TripCount, ScalarEvolution &SE, + const TargetTransformInfo &TTI) + : L(L), TripCount(TripCount), SE(SE), TTI(TTI), + NumberOfOptimizedInstructions(0) {} + + // Visit all loads the loop L, and for those that, after complete loop + // unrolling, would have a constant address and it will point to a known + // constant initializer, record its base address for future use. It is used + // when we estimate number of potentially simplified instructions. + void FindConstFoldableLoads() { + for (auto BB : L->getBlocks()) { + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { + if (LoadInst *LI = dyn_cast(I)) { + if (!LI->isSimple()) + continue; + Value *AddrOp = LI->getPointerOperand(); + const SCEV *S = SE.getSCEV(AddrOp); + FindConstantPointers Visitor(L, SE); + SCEVTraversal T(Visitor); + T.visitAll(S); + if (Visitor.IndexIsConstant && Visitor.LoadCanBeConstantFolded) { + LoadBaseAddresses[LI] = Visitor.BaseAddress; + } + } + } + } + } + + // Given a list of loads that could be constant-folded (LoadBaseAddresses), + // estimate number of optimized instructions after substituting the concrete + // values for the given Iteration. + // Fill in SimplifiedInsns map for future use in DCE-estimation. + unsigned EstimateNumberOfSimplifiedInsns(unsigned Iteration) { + SmallVector Worklist; + SimplifiedValues.clear(); + CountedInsns.clear(); + + NumberOfOptimizedInstructions = 0; + // We start by adding all loads to the worklist. + for (auto LoadDescr : LoadBaseAddresses) { + LoadInst *LI = LoadDescr.first; + SimplifiedValues[LI] = computeLoadValue(LI, Iteration); + if (CountedInsns.insert(LI).second) + NumberOfOptimizedInstructions += TTI.getUserCost(LI); + + for (auto U : LI->users()) { + Instruction *UI = dyn_cast(U); + if (!UI) + continue; + if (!L->contains(UI)) + continue; + Worklist.push_back(UI); + } + } + + // And then we try to simplify every user of every instruction from the + // worklist. If we do simplify a user, add it to the worklist to process + // its users as well. + while (!Worklist.empty()) { + Instruction *I = Worklist.pop_back_val(); + if (!visit(I)) + continue; + for (auto U : I->users()) { + Instruction *UI = dyn_cast(U); + if (!UI) + continue; + if (!L->contains(UI)) + continue; + Worklist.push_back(UI); + } + } + return NumberOfOptimizedInstructions; + } + + // Given a list of potentially simplifed instructions, estimate number of + // instructions that would become dead if we do perform the simplification. + unsigned EstimateNumberOfDeadInsns() { + NumberOfOptimizedInstructions = 0; + SmallVector Worklist; + DenseMap DeadInstructions; + // Start by initializing worklist with simplified instructions. + for (auto Folded : SimplifiedValues) { + if (auto FoldedInsn = dyn_cast(Folded.first)) { + Worklist.push_back(FoldedInsn); + DeadInstructions[FoldedInsn] = true; + } + } + // If a definition of an insn is only used by simplified or dead + // instructions, it's also dead. Check defs of all instructions from the + // worklist. + while (!Worklist.empty()) { + Instruction *FoldedInsn = Worklist.pop_back_val(); + for (Value *Op : FoldedInsn->operands()) { + if (auto I = dyn_cast(Op)) { + if (!L->contains(I)) + continue; + if (SimplifiedValues[I]) + continue; // This insn has been counted already. + if (I->getNumUses() == 0) + continue; + bool AllUsersFolded = true; + for (auto U : I->users()) { + Instruction *UI = dyn_cast(U); + if (!SimplifiedValues[UI] && !DeadInstructions[UI]) { + AllUsersFolded = false; + break; + } + } + if (AllUsersFolded) { + NumberOfOptimizedInstructions += TTI.getUserCost(I); + Worklist.push_back(I); + DeadInstructions[I] = true; + } + } + } + } + return NumberOfOptimizedInstructions; + } +}; + +// Complete loop unrolling can make some loads constant, and we need to know if +// that would expose any further optimization opportunities. +// This routine estimates this optimization effect and returns the number of +// instructions, that potentially might be optimized away. +static unsigned +ApproximateNumberOfOptimizedInstructions(const Loop *L, ScalarEvolution &SE, + unsigned TripCount, + const TargetTransformInfo &TTI) { + if (!TripCount) + return 0; + + UnrollAnalyzer UA(L, TripCount, SE, TTI); + UA.FindConstFoldableLoads(); + + // Estimate number of instructions, that could be simplified if we replace a + // load with the corresponding constant. Since the same load will take + // different values on different iterations, we have to go through all loop's + // iterations here. To limit ourselves here, we check only first N + // iterations, and then scale the found number, if necessary. + unsigned IterationsNumberForEstimate = + std::min(UnrollMaxIterationsCountToAnalyze, TripCount); + unsigned NumberOfOptimizedInstructions = 0; + for (unsigned i = 0; i < IterationsNumberForEstimate; ++i) { + NumberOfOptimizedInstructions += UA.EstimateNumberOfSimplifiedInsns(i); + NumberOfOptimizedInstructions += UA.EstimateNumberOfDeadInsns(); + } + NumberOfOptimizedInstructions *= TripCount / IterationsNumberForEstimate; + + return NumberOfOptimizedInstructions; +} + /// ApproximateLoopSize - Approximate the size of the loop. static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, @@ -404,8 +728,14 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) { return false; } + unsigned NumberOfOptimizedInstructions = + ApproximateNumberOfOptimizedInstructions(L, *SE, TripCount, TTI); + DEBUG(dbgs() << " Complete unrolling could save: " + << NumberOfOptimizedInstructions << "\n"); + unsigned Threshold, PartialThreshold; - selectThresholds(L, HasPragma, UP, Threshold, PartialThreshold); + selectThresholds(L, HasPragma, UP, Threshold, PartialThreshold, + NumberOfOptimizedInstructions); // Given Count, TripCount and thresholds determine the type of // unrolling which is to be performed.