mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 10:42:39 +01:00
Add SparseBitVector implementation
llvm-svn: 41790
This commit is contained in:
parent
b1388b7afb
commit
f0f3834ee6
@ -29,6 +29,7 @@ D: Target-independent code generator and analysis improvements
|
||||
N: Daniel Berlin
|
||||
E: dberlin@dberlin.org
|
||||
D: ET-Forest implementation.
|
||||
D: Sparse bitmap
|
||||
|
||||
N: Neil Booth
|
||||
E: neil@daikokuya.co.uk
|
||||
|
560
include/llvm/ADT/SparseBitVector.h
Normal file
560
include/llvm/ADT/SparseBitVector.h
Normal file
@ -0,0 +1,560 @@
|
||||
//===- llvm/ADT/SparseBitVector.h - Efficient Sparse BitVector -*- C++ -*- ===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by Daniel Berlin and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines the SparseBitVector class. See the doxygen comment for
|
||||
// SparseBitVector for more details on the algorithm used.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ADT_SPARSEBITVECTOR_H
|
||||
#define LLVM_ADT_SPARSEBITVECTOR_H
|
||||
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
#include <list>
|
||||
#include <algorithm>
|
||||
#include "llvm/Support/DataTypes.h"
|
||||
#include "llvm/ADT/STLExtras.h"
|
||||
#include "llvm/Support/MathExtras.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
/// SparseBitVector is an implementation of a bitvector that is sparse by only
|
||||
/// storing the elements that have non-zero bits set. In order to make this
|
||||
/// fast for the most common cases, SparseBitVector is implemented as a linked
|
||||
/// list of SparseBitVectorElements. We maintain a pointer to the last
|
||||
/// SparseBitVectorElement accessed (in the form of a list iterator), in order
|
||||
/// to make multiple in-order test/set constant time after the first one is
|
||||
/// executed. Note that using vectors to store SparseBitVectorElement's does
|
||||
/// not work out very well because it causes insertion in the middle to take
|
||||
/// enormous amounts of time with a large amount of bits. Other structures that
|
||||
/// have better worst cases for insertion in the middle (various balanced trees,
|
||||
/// etc) do not perform as well in practice as a linked list with this iterator
|
||||
/// kept up to date. They are also significantly more memory intensive.
|
||||
|
||||
|
||||
template <unsigned ElementSize = 128>
|
||||
struct SparseBitVectorElement {
|
||||
public:
|
||||
typedef unsigned long BitWord;
|
||||
enum {
|
||||
BITWORD_SIZE = sizeof(BitWord) * 8,
|
||||
BITWORDS_PER_ELEMENT = (ElementSize + BITWORD_SIZE - 1) / BITWORD_SIZE,
|
||||
BITS_PER_ELEMENT = ElementSize
|
||||
};
|
||||
private:
|
||||
// Index of Element in terms of where first bit starts.
|
||||
unsigned ElementIndex;
|
||||
BitWord Bits[BITWORDS_PER_ELEMENT];
|
||||
SparseBitVectorElement();
|
||||
public:
|
||||
explicit SparseBitVectorElement(unsigned Idx) {
|
||||
ElementIndex = Idx;
|
||||
memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT);
|
||||
}
|
||||
|
||||
~SparseBitVectorElement() {
|
||||
}
|
||||
|
||||
// Copy ctor.
|
||||
SparseBitVectorElement(const SparseBitVectorElement &RHS) {
|
||||
ElementIndex = RHS.ElementIndex;
|
||||
std::copy(&RHS.Bits[0], &RHS.Bits[BITWORDS_PER_ELEMENT], Bits);
|
||||
}
|
||||
|
||||
// Comparison.
|
||||
bool operator==(const SparseBitVectorElement &RHS) const {
|
||||
if (ElementIndex != RHS.ElementIndex)
|
||||
return false;
|
||||
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
|
||||
if (Bits[i] != RHS.Bits[i])
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool operator!=(const SparseBitVectorElement &RHS) const {
|
||||
return !(*this == RHS);
|
||||
}
|
||||
|
||||
// Return the bits that make up word Idx in our element.
|
||||
BitWord word(unsigned Idx) const {
|
||||
assert (Idx < BITWORDS_PER_ELEMENT);
|
||||
return Bits[Idx];
|
||||
}
|
||||
|
||||
unsigned index() const {
|
||||
return ElementIndex;
|
||||
}
|
||||
|
||||
bool empty() const {
|
||||
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
|
||||
if (Bits[i])
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
void set(unsigned Idx) {
|
||||
Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE);
|
||||
}
|
||||
|
||||
bool test_and_set (unsigned Idx) {
|
||||
bool old = test(Idx);
|
||||
if (!old)
|
||||
set(Idx);
|
||||
return !old;
|
||||
}
|
||||
|
||||
void reset(unsigned Idx) {
|
||||
Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE));
|
||||
}
|
||||
|
||||
bool test(unsigned Idx) const {
|
||||
return Bits[Idx / BITWORD_SIZE] & (1L << (Idx % BITWORD_SIZE));
|
||||
}
|
||||
|
||||
unsigned count() const {
|
||||
unsigned NumBits = 0;
|
||||
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
|
||||
if (sizeof(BitWord) == 4)
|
||||
NumBits += CountPopulation_32(Bits[i]);
|
||||
else if (sizeof(BitWord) == 8)
|
||||
NumBits += CountPopulation_64(Bits[i]);
|
||||
else
|
||||
assert(0 && "Unsupported!");
|
||||
return NumBits;
|
||||
}
|
||||
|
||||
/// find_first - Returns the index of the first set bit.
|
||||
int find_first() const {
|
||||
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
|
||||
if (Bits[i] != 0) {
|
||||
if (sizeof(BitWord) == 4)
|
||||
return i * BITWORD_SIZE + CountTrailingZeros_32(Bits[i]);
|
||||
else if (sizeof(BitWord) == 8)
|
||||
return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
|
||||
else
|
||||
assert(0 && "Unsupported!");
|
||||
}
|
||||
assert(0 && "Illegal empty element");
|
||||
}
|
||||
|
||||
/// find_next - Returns the index of the next set bit following the
|
||||
/// "Prev" bit. Returns -1 if the next set bit is not found.
|
||||
int find_next(unsigned Prev) const {
|
||||
++Prev;
|
||||
if (Prev >= BITS_PER_ELEMENT)
|
||||
return -1;
|
||||
|
||||
unsigned WordPos = Prev / BITWORD_SIZE;
|
||||
unsigned BitPos = Prev % BITWORD_SIZE;
|
||||
BitWord Copy = Bits[WordPos];
|
||||
assert (WordPos <= BITWORDS_PER_ELEMENT
|
||||
&& "Word Position outside of element");
|
||||
|
||||
// Mask off previous bits.
|
||||
Copy &= ~0L << BitPos;
|
||||
|
||||
if (Copy != 0) {
|
||||
if (sizeof(BitWord) == 4)
|
||||
return WordPos * BITWORD_SIZE + CountTrailingZeros_32(Copy);
|
||||
else if (sizeof(BitWord) == 8)
|
||||
return WordPos * BITWORD_SIZE + CountTrailingZeros_64(Copy);
|
||||
else
|
||||
assert(0 && "Unsupported!");
|
||||
}
|
||||
|
||||
// Check subsequent words.
|
||||
for (unsigned i = WordPos+1; i < BITWORDS_PER_ELEMENT; ++i)
|
||||
if (Bits[i] != 0) {
|
||||
if (sizeof(BitWord) == 4)
|
||||
return i * BITWORD_SIZE + CountTrailingZeros_32(Bits[i]);
|
||||
else if (sizeof(BitWord) == 8)
|
||||
return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
|
||||
else
|
||||
assert(0 && "Unsupported!");
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
// Union this element with RHS and return true if this one changed.
|
||||
bool unionWith(const SparseBitVectorElement &RHS) {
|
||||
bool changed = false;
|
||||
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
|
||||
BitWord old = changed ? 0 : Bits[i];
|
||||
|
||||
Bits[i] |= RHS.Bits[i];
|
||||
if (old != Bits[i])
|
||||
changed = true;
|
||||
}
|
||||
return changed;
|
||||
}
|
||||
|
||||
// Intersect this Element with RHS and return true if this one changed.
|
||||
// BecameZero is set to true if this element became all-zero bits.
|
||||
bool intersectWith(const SparseBitVectorElement &RHS,
|
||||
bool &BecameZero) {
|
||||
bool changed = false;
|
||||
bool allzero = true;
|
||||
|
||||
BecameZero = false;
|
||||
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
|
||||
BitWord old = changed ? 0 : Bits[i];
|
||||
|
||||
Bits[i] &= RHS.Bits[i];
|
||||
if (Bits[i] != 0)
|
||||
allzero = false;
|
||||
|
||||
if (old != Bits[i])
|
||||
changed = true;
|
||||
}
|
||||
BecameZero = !allzero;
|
||||
return changed;
|
||||
}
|
||||
};
|
||||
|
||||
template <unsigned ElementSize = 128>
|
||||
class SparseBitVector {
|
||||
typedef std::list<SparseBitVectorElement<ElementSize> *> ElementList;
|
||||
typedef typename ElementList::iterator ElementListIter;
|
||||
typedef typename ElementList::const_iterator ElementListConstIter;
|
||||
enum {
|
||||
BITWORD_SIZE = SparseBitVectorElement<ElementSize>::BITWORD_SIZE
|
||||
};
|
||||
|
||||
// Pointer to our current Element.
|
||||
ElementListIter CurrElementIter;
|
||||
ElementList Elements;
|
||||
|
||||
// This is like std::lower_bound, except we do linear searching from the
|
||||
// current position.
|
||||
ElementListIter FindLowerBound(unsigned ElementIndex) {
|
||||
|
||||
if (Elements.empty()) {
|
||||
CurrElementIter = Elements.begin();
|
||||
return Elements.begin();
|
||||
}
|
||||
|
||||
// Make sure our current iterator is valid.
|
||||
if (CurrElementIter == Elements.end())
|
||||
--CurrElementIter;
|
||||
|
||||
// Search from our current iterator, either backwards or forwards,
|
||||
// depending on what element we are looking for.
|
||||
ElementListIter ElementIter = CurrElementIter;
|
||||
if ((*CurrElementIter)->index() == ElementIndex) {
|
||||
return ElementIter;
|
||||
} else if ((*CurrElementIter)->index() > ElementIndex) {
|
||||
while (ElementIter != Elements.begin()
|
||||
&& (*ElementIter)->index() > ElementIndex)
|
||||
--ElementIter;
|
||||
} else {
|
||||
while (ElementIter != Elements.end() &&
|
||||
(*ElementIter)->index() <= ElementIndex)
|
||||
++ElementIter;
|
||||
--ElementIter;
|
||||
}
|
||||
CurrElementIter = ElementIter;
|
||||
return ElementIter;
|
||||
}
|
||||
|
||||
// Iterator to walk set bits in the bitmap. This iterator is a lot uglier
|
||||
// than it would be, in order to be efficient.
|
||||
struct SparseBitVectorIterator {
|
||||
private:
|
||||
bool AtEnd;
|
||||
|
||||
SparseBitVector<ElementSize> &BitVector;
|
||||
|
||||
// Current element inside of bitmap.
|
||||
ElementListConstIter Iter;
|
||||
|
||||
// Current bit number inside of our bitmap.
|
||||
unsigned BitNumber;
|
||||
|
||||
// Current word number inside of our element.
|
||||
unsigned WordNumber;
|
||||
|
||||
// Current bits from the element.
|
||||
typename SparseBitVectorElement<ElementSize>::BitWord Bits;
|
||||
|
||||
// Move our iterator to the first non-zero bit in the bitmap.
|
||||
void AdvanceToFirstNonZero() {
|
||||
if (AtEnd)
|
||||
return;
|
||||
if (BitVector.Elements.empty()) {
|
||||
AtEnd = true;
|
||||
return;
|
||||
}
|
||||
Iter = BitVector.Elements.begin();
|
||||
BitNumber = (*Iter)->index() * ElementSize;
|
||||
unsigned BitPos = (*Iter)->find_first();
|
||||
BitNumber += BitPos;
|
||||
WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE;
|
||||
Bits = (*Iter)->word(WordNumber);
|
||||
Bits >>= BitPos % BITWORD_SIZE;
|
||||
}
|
||||
|
||||
// Move our iterator to the next non-zero bit.
|
||||
void AdvanceToNextNonZero() {
|
||||
if (AtEnd)
|
||||
return;
|
||||
|
||||
while (Bits && !(Bits & 1)) {
|
||||
Bits >>= 1;
|
||||
BitNumber += 1;
|
||||
}
|
||||
|
||||
// See if we ran out of Bits in this word.
|
||||
if (!Bits) {
|
||||
int NextSetBitNumber = (*Iter)->find_next(BitNumber % ElementSize) ;
|
||||
// If we ran out of set bits in this element, move to next element.
|
||||
if (NextSetBitNumber == -1 || (BitNumber % ElementSize == 0)) {
|
||||
Iter++;
|
||||
WordNumber = 0;
|
||||
|
||||
// We may run out of elements in the bitmap.
|
||||
if (Iter == BitVector.Elements.end()) {
|
||||
AtEnd = true;
|
||||
return;
|
||||
}
|
||||
// Set up for next non zero word in bitmap.
|
||||
BitNumber = (*Iter)->index() * ElementSize;
|
||||
NextSetBitNumber = (*Iter)->find_first();
|
||||
BitNumber += NextSetBitNumber;
|
||||
WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE;
|
||||
Bits = (*Iter)->word(WordNumber);
|
||||
Bits >>= NextSetBitNumber % BITWORD_SIZE;
|
||||
} else {
|
||||
WordNumber = (NextSetBitNumber % ElementSize) / BITWORD_SIZE;
|
||||
Bits = (*Iter)->word(WordNumber);
|
||||
Bits >>= NextSetBitNumber % BITWORD_SIZE;
|
||||
}
|
||||
}
|
||||
}
|
||||
public:
|
||||
// Preincrement.
|
||||
inline SparseBitVectorIterator& operator++() {
|
||||
BitNumber++;
|
||||
Bits >>= 1;
|
||||
AdvanceToNextNonZero();
|
||||
return *this;
|
||||
}
|
||||
|
||||
// Postincrement.
|
||||
inline SparseBitVectorIterator operator++(int) {
|
||||
SparseBitVectorIterator tmp = *this;
|
||||
++*this;
|
||||
return tmp;
|
||||
}
|
||||
|
||||
// Return the current set bit number.
|
||||
unsigned operator*() const {
|
||||
return BitNumber;
|
||||
}
|
||||
|
||||
bool operator==(const SparseBitVectorIterator &RHS) const {
|
||||
// If they are both at the end, ignore the rest of the fields.
|
||||
if (AtEnd == RHS.AtEnd)
|
||||
return true;
|
||||
// Otherwise they are the same if they have the same bit number and
|
||||
// bitmap.
|
||||
return AtEnd == RHS.AtEnd && RHS.BitNumber == BitNumber;
|
||||
}
|
||||
bool operator!=(const SparseBitVectorIterator &RHS) const {
|
||||
return !(*this == RHS);
|
||||
}
|
||||
|
||||
explicit SparseBitVectorIterator(SparseBitVector<ElementSize> &RHS,
|
||||
bool end = false):BitVector(RHS) {
|
||||
Iter = BitVector.Elements.begin();
|
||||
BitNumber = 0;
|
||||
Bits = 0;
|
||||
WordNumber = ~0;
|
||||
AtEnd = end;
|
||||
AdvanceToFirstNonZero();
|
||||
}
|
||||
};
|
||||
public:
|
||||
typedef SparseBitVectorIterator iterator;
|
||||
typedef const SparseBitVectorIterator const_iterator;
|
||||
|
||||
SparseBitVector () {
|
||||
CurrElementIter = Elements.begin ();
|
||||
}
|
||||
|
||||
~SparseBitVector() {
|
||||
for_each(Elements.begin(), Elements.end(),
|
||||
deleter<SparseBitVectorElement<ElementSize> >);
|
||||
}
|
||||
|
||||
// SparseBitVector copy ctor.
|
||||
SparseBitVector(const SparseBitVector &RHS) {
|
||||
ElementListConstIter ElementIter = RHS.Elements.begin();
|
||||
while (ElementIter != RHS.Elements.end()) {
|
||||
SparseBitVectorElement<ElementSize> *ElementCopy;
|
||||
ElementCopy = new SparseBitVectorElement<ElementSize>(*(*ElementIter));
|
||||
Elements.push_back(ElementCopy);
|
||||
}
|
||||
|
||||
CurrElementIter = Elements.begin ();
|
||||
}
|
||||
|
||||
// Test, Reset, and Set a bit in the bitmap.
|
||||
bool test(unsigned Idx) {
|
||||
if (Elements.empty())
|
||||
return false;
|
||||
|
||||
unsigned ElementIndex = Idx / ElementSize;
|
||||
ElementListIter ElementIter = FindLowerBound(ElementIndex);
|
||||
|
||||
// If we can't find an element that is supposed to contain this bit, there
|
||||
// is nothing more to do.
|
||||
if (ElementIter == Elements.end() ||
|
||||
(*ElementIter)->index() != ElementIndex)
|
||||
return false;
|
||||
return (*ElementIter)->test(Idx % ElementSize);
|
||||
}
|
||||
|
||||
void reset(unsigned Idx) {
|
||||
if (Elements.empty())
|
||||
return;
|
||||
|
||||
unsigned ElementIndex = Idx / ElementSize;
|
||||
ElementListIter ElementIter = FindLowerBound(ElementIndex);
|
||||
|
||||
// If we can't find an element that is supposed to contain this bit, there
|
||||
// is nothing more to do.
|
||||
if (ElementIter == Elements.end() ||
|
||||
(*ElementIter)->index() != ElementIndex)
|
||||
return;
|
||||
(*ElementIter)->reset(Idx % ElementSize);
|
||||
|
||||
// When the element is zeroed out, delete it.
|
||||
if ((*ElementIter)->empty()) {
|
||||
delete (*ElementIter);
|
||||
++CurrElementIter;
|
||||
Elements.erase(ElementIter);
|
||||
}
|
||||
}
|
||||
|
||||
void set(unsigned Idx) {
|
||||
SparseBitVectorElement<ElementSize> *Element;
|
||||
unsigned ElementIndex = Idx / ElementSize;
|
||||
|
||||
if (Elements.empty()) {
|
||||
Element = new SparseBitVectorElement<ElementSize>(ElementIndex);
|
||||
Elements.push_back(Element);
|
||||
} else {
|
||||
ElementListIter ElementIter = FindLowerBound(ElementIndex);
|
||||
|
||||
if (ElementIter != Elements.end() &&
|
||||
(*ElementIter)->index() == ElementIndex)
|
||||
Element = *ElementIter;
|
||||
else {
|
||||
Element = new SparseBitVectorElement<ElementSize>(ElementIndex);
|
||||
// Insert does insert before, and lower bound gives the one before.
|
||||
Elements.insert(++ElementIter, Element);
|
||||
}
|
||||
}
|
||||
Element->set(Idx % ElementSize);
|
||||
}
|
||||
|
||||
// Union our bitmap with the RHS and return true if we changed.
|
||||
bool operator|=(const SparseBitVector &RHS) {
|
||||
bool changed = false;
|
||||
ElementListIter Iter1 = Elements.begin();
|
||||
ElementListConstIter Iter2 = RHS.Elements.begin();
|
||||
|
||||
// IE They may both be end
|
||||
if (Iter1 == Iter2)
|
||||
return false;
|
||||
|
||||
// See if the first bitmap element is the same in both. This is only
|
||||
// possible if they are the same bitmap.
|
||||
if (Iter1 != Elements.end() && Iter2 != RHS.Elements.end())
|
||||
if (*Iter1 == *Iter2)
|
||||
return false;
|
||||
|
||||
while (Iter2 != RHS.Elements.end()) {
|
||||
if (Iter1 == Elements.end() || (*Iter1)->index() > (*Iter2)->index()) {
|
||||
SparseBitVectorElement<ElementSize> *NewElem;
|
||||
|
||||
NewElem = new SparseBitVectorElement<ElementSize>(*(*Iter2));
|
||||
Elements.insert(Iter1, NewElem);
|
||||
Iter2++;
|
||||
changed = true;
|
||||
} else if ((*Iter1)->index() == (*Iter2)->index()) {
|
||||
changed |= (*Iter1)->unionWith(*(*Iter2));
|
||||
Iter1++;
|
||||
Iter2++;
|
||||
} else {
|
||||
Iter1++;
|
||||
}
|
||||
}
|
||||
CurrElementIter = Elements.begin();
|
||||
return changed;
|
||||
}
|
||||
|
||||
// Intersect our bitmap with the RHS and return true if ours changed.
|
||||
bool operator&=(const SparseBitVector &RHS) {
|
||||
bool changed = false;
|
||||
ElementListIter Iter1 = Elements.begin();
|
||||
ElementListConstIter Iter2 = RHS.Elements.begin();
|
||||
|
||||
// IE They may both be end.
|
||||
if (Iter1 == Iter2)
|
||||
return false;
|
||||
|
||||
// See if the first bitmap element is the same in both. This is only
|
||||
// possible if they are the same bitmap.
|
||||
if (Iter1 != Elements.end() && Iter2 != RHS.Elements.end())
|
||||
if (*Iter1 == *Iter2)
|
||||
return false;
|
||||
|
||||
// Loop through, intersecting as we go, erasing elements when necessary.
|
||||
while (Iter2 != RHS.Elements.end()) {
|
||||
if (Iter1 == Elements.end())
|
||||
return changed;
|
||||
|
||||
if ((*Iter1)->index() > (*Iter2)->index()) {
|
||||
Iter2++;
|
||||
} else if ((*Iter1)->index() == (*Iter2)->index()) {
|
||||
bool BecameZero;
|
||||
changed |= (*Iter1)->intersectWith(*(*Iter2), BecameZero);
|
||||
if (BecameZero) {
|
||||
ElementListIter IterTmp = Iter1;
|
||||
delete *IterTmp;
|
||||
Elements.erase(IterTmp);
|
||||
Iter1++;
|
||||
} else {
|
||||
Iter1++;
|
||||
}
|
||||
Iter2++;
|
||||
} else {
|
||||
ElementListIter IterTmp = Iter1;
|
||||
Iter1++;
|
||||
delete *IterTmp;
|
||||
Elements.erase(IterTmp);
|
||||
}
|
||||
}
|
||||
CurrElementIter = Elements.begin();
|
||||
return changed;
|
||||
}
|
||||
|
||||
iterator begin() const {
|
||||
return iterator(*this);
|
||||
}
|
||||
|
||||
iterator end() const {
|
||||
return iterator(*this, ~0);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user