1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00

[InstCombine] break up foldICmpEqualityWithConstant(); NFCI

Almost all of these folds require changes to allow vector types. 
Splitting up the logic should make that easier to do incrementally.

llvm-svn: 276360
This commit is contained in:
Sanjay Patel 2016-07-21 23:27:36 +00:00
parent 9d63784d14
commit f1b3404e72
2 changed files with 170 additions and 157 deletions

View File

@ -2204,7 +2204,8 @@ Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &ICI,
Instruction *InstCombiner::foldICmpEqualityWithConstant(ICmpInst &ICI,
Instruction *LHSI,
ConstantInt *RHS) {
if (!ICI.isEquality())
BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI);
if (!BO || !ICI.isEquality())
return nullptr;
const APInt &RHSV = RHS->getValue();
@ -2212,168 +2213,176 @@ Instruction *InstCombiner::foldICmpEqualityWithConstant(ICmpInst &ICI,
// If the first operand is (add|sub|and|or|xor|rem) with a constant, and
// the second operand is a constant, simplify a bit.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
switch (BO->getOpcode()) {
case Instruction::SRem:
// If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) && BO->hasOneUse()) {
const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
if (V.sgt(1) && V.isPowerOf2()) {
Value *NewRem = Builder->CreateURem(BO->getOperand(0),
BO->getOperand(1), BO->getName());
return new ICmpInst(ICI.getPredicate(), NewRem,
Constant::getNullValue(BO->getType()));
}
switch (BO->getOpcode()) {
case Instruction::SRem:
// If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) && BO->hasOneUse()) {
const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
if (V.sgt(1) && V.isPowerOf2()) {
Value *NewRem = Builder->CreateURem(BO->getOperand(0),
BO->getOperand(1), BO->getName());
return new ICmpInst(ICI.getPredicate(), NewRem,
Constant::getNullValue(BO->getType()));
}
break;
case Instruction::Add:
// Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
if (BO->hasOneUse())
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
ConstantExpr::getSub(RHS, BOp1C));
} else if (RHSV == 0) {
// Replace ((add A, B) != 0) with (A != -B) if A or B is
// efficiently invertible, or if the add has just this one use.
Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
if (Value *NegVal = dyn_castNegVal(BOp1))
return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
if (Value *NegVal = dyn_castNegVal(BOp0))
return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
if (BO->hasOneUse()) {
Value *Neg = Builder->CreateNeg(BOp1);
Neg->takeName(BO);
return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
}
}
break;
case Instruction::Xor:
if (BO->hasOneUse()) {
if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
// For the xor case, we can xor two constants together, eliminating
// the explicit xor.
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
ConstantExpr::getXor(RHS, BOC));
} else if (RHSV == 0) {
// Replace ((xor A, B) != 0) with (A != B)
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
BO->getOperand(1));
}
}
break;
case Instruction::Sub:
if (BO->hasOneUse()) {
if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
// Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
ConstantExpr::getSub(BOp0C, RHS));
} else if (RHSV == 0) {
// Replace ((sub A, B) != 0) with (A != B)
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
BO->getOperand(1));
}
}
break;
case Instruction::Or:
// If bits are being or'd in that are not present in the constant we
// are comparing against, then the comparison could never succeed!
if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Constant *NotCI = ConstantExpr::getNot(RHS);
if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
return replaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
// Comparing if all bits outside of a constant mask are set?
// Replace (X | C) == -1 with (X & ~C) == ~C.
// This removes the -1 constant.
if (BO->hasOneUse() && RHS->isAllOnesValue()) {
Constant *NotBOC = ConstantExpr::getNot(BOC);
Value *And = Builder->CreateAnd(BO->getOperand(0), NotBOC);
return new ICmpInst(ICI.getPredicate(), And, NotBOC);
}
}
break;
case Instruction::And:
if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
// If bits are being compared against that are and'd out, then the
// comparison can never succeed!
if ((RHSV & ~BOC->getValue()) != 0)
return replaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
// If we have ((X & C) == C), turn it into ((X & C) != 0).
if (RHS == BOC && RHSV.isPowerOf2())
return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
LHSI, Constant::getNullValue(RHS->getType()));
// Don't perform the following transforms if the AND has multiple uses
if (!BO->hasOneUse())
break;
// Replace (and X, (1 << size(X)-1) != 0) with x s< 0
if (BOC->getValue().isSignBit()) {
Value *X = BO->getOperand(0);
Constant *Zero = Constant::getNullValue(X->getType());
ICmpInst::Predicate pred =
isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
return new ICmpInst(pred, X, Zero);
}
// ((X & ~7) == 0) --> X < 8
if (RHSV == 0 && isHighOnes(BOC)) {
Value *X = BO->getOperand(0);
Constant *NegX = ConstantExpr::getNeg(BOC);
ICmpInst::Predicate pred =
isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
return new ICmpInst(pred, X, NegX);
}
}
break;
case Instruction::Mul:
if (RHSV == 0 && BO->hasNoSignedWrap()) {
if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
// The trivial case (mul X, 0) is handled by InstSimplify
// General case : (mul X, C) != 0 iff X != 0
// (mul X, C) == 0 iff X == 0
if (!BOC->isZero())
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
Constant::getNullValue(RHS->getType()));
}
}
break;
default:
break;
}
} else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
// Handle icmp {eq|ne} <intrinsic>, intcst.
switch (II->getIntrinsicID()) {
case Intrinsic::bswap:
break;
case Instruction::Add:
// Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
if (BO->hasOneUse())
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
ConstantExpr::getSub(RHS, BOp1C));
} else if (RHSV == 0) {
// Replace ((add A, B) != 0) with (A != -B) if A or B is
// efficiently invertible, or if the add has just this one use.
Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
if (Value *NegVal = dyn_castNegVal(BOp1))
return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
if (Value *NegVal = dyn_castNegVal(BOp0))
return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
if (BO->hasOneUse()) {
Value *Neg = Builder->CreateNeg(BOp1);
Neg->takeName(BO);
return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
}
}
break;
case Instruction::Xor:
if (BO->hasOneUse()) {
if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
// For the xor case, we can xor two constants together, eliminating
// the explicit xor.
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
ConstantExpr::getXor(RHS, BOC));
} else if (RHSV == 0) {
// Replace ((xor A, B) != 0) with (A != B)
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
BO->getOperand(1));
}
}
break;
case Instruction::Sub:
if (BO->hasOneUse()) {
if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
// Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
ConstantExpr::getSub(BOp0C, RHS));
} else if (RHSV == 0) {
// Replace ((sub A, B) != 0) with (A != B)
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
BO->getOperand(1));
}
}
break;
case Instruction::Or:
// If bits are being or'd in that are not present in the constant we
// are comparing against, then the comparison could never succeed!
if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Constant *NotCI = ConstantExpr::getNot(RHS);
if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
return replaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
// Comparing if all bits outside of a constant mask are set?
// Replace (X | C) == -1 with (X & ~C) == ~C.
// This removes the -1 constant.
if (BO->hasOneUse() && RHS->isAllOnesValue()) {
Constant *NotBOC = ConstantExpr::getNot(BOC);
Value *And = Builder->CreateAnd(BO->getOperand(0), NotBOC);
return new ICmpInst(ICI.getPredicate(), And, NotBOC);
}
}
break;
case Instruction::And:
if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
// If bits are being compared against that are and'd out, then the
// comparison can never succeed!
if ((RHSV & ~BOC->getValue()) != 0)
return replaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
// If we have ((X & C) == C), turn it into ((X & C) != 0).
if (RHS == BOC && RHSV.isPowerOf2())
return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
LHSI, Constant::getNullValue(RHS->getType()));
// Don't perform the following transforms if the AND has multiple uses
if (!BO->hasOneUse())
break;
// Replace (and X, (1 << size(X)-1) != 0) with x s< 0
if (BOC->getValue().isSignBit()) {
Value *X = BO->getOperand(0);
Constant *Zero = Constant::getNullValue(X->getType());
ICmpInst::Predicate pred =
isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
return new ICmpInst(pred, X, Zero);
}
// ((X & ~7) == 0) --> X < 8
if (RHSV == 0 && isHighOnes(BOC)) {
Value *X = BO->getOperand(0);
Constant *NegX = ConstantExpr::getNeg(BOC);
ICmpInst::Predicate pred =
isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
return new ICmpInst(pred, X, NegX);
}
}
break;
case Instruction::Mul:
if (RHSV == 0 && BO->hasNoSignedWrap()) {
if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
// The trivial case (mul X, 0) is handled by InstSimplify
// General case : (mul X, C) != 0 iff X != 0
// (mul X, C) == 0 iff X == 0
if (!BOC->isZero())
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
Constant::getNullValue(RHS->getType()));
}
}
break;
default:
break;
}
return nullptr;
}
Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &ICI,
Instruction *LHSI,
ConstantInt *RHS) {
IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI);
if (!II || !ICI.isEquality())
return nullptr;
// Handle icmp {eq|ne} <intrinsic>, intcst.
const APInt &RHSV = RHS->getValue();
switch (II->getIntrinsicID()) {
case Intrinsic::bswap:
Worklist.Add(II);
ICI.setOperand(0, II->getArgOperand(0));
ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
return &ICI;
case Intrinsic::ctlz:
case Intrinsic::cttz:
// ctz(A) == bitwidth(a) -> A == 0 and likewise for !=
if (RHSV == RHS->getType()->getBitWidth()) {
Worklist.Add(II);
ICI.setOperand(0, II->getArgOperand(0));
ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
return &ICI;
case Intrinsic::ctlz:
case Intrinsic::cttz:
// ctz(A) == bitwidth(a) -> A == 0 and likewise for !=
if (RHSV == RHS->getType()->getBitWidth()) {
Worklist.Add(II);
ICI.setOperand(0, II->getArgOperand(0));
ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
return &ICI;
}
break;
case Intrinsic::ctpop:
// popcount(A) == 0 -> A == 0 and likewise for !=
if (RHS->isZero()) {
Worklist.Add(II);
ICI.setOperand(0, II->getArgOperand(0));
ICI.setOperand(1, RHS);
return &ICI;
}
break;
default:
break;
}
break;
case Intrinsic::ctpop:
// popcount(A) == 0 -> A == 0 and likewise for !=
if (RHS->isZero()) {
Worklist.Add(II);
ICI.setOperand(0, II->getArgOperand(0));
ICI.setOperand(1, RHS);
return &ICI;
}
break;
default:
break;
}
return nullptr;
}
@ -3634,6 +3643,8 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
return Res;
if (Instruction *Res = foldICmpEqualityWithConstant(I, LHSI, CI))
return Res;
if (Instruction *Res = foldICmpIntrinsicWithConstant(I, LHSI, CI))
return Res;
}
// (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
if (I.isEquality() && CI->isZero() &&

View File

@ -585,6 +585,8 @@ private:
ConstantInt *RHS);
Instruction *foldICmpEqualityWithConstant(ICmpInst &ICI, Instruction *LHS,
ConstantInt *RHS);
Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, Instruction *LHS,
ConstantInt *RHS);
Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
ConstantInt *AndRHS, BinaryOperator &TheAnd);