1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00

[SCEV] make SCEV smarter about proving no-wrap.

Summary:
Teach SCEV to prove no overflow for an add recurrence by proving
something about the range of another add recurrence a loop-invariant
distance away from it.

Reviewers: atrick, hfinkel

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D7980

llvm-svn: 231305
This commit is contained in:
Sanjoy Das 2015-03-04 22:24:17 +00:00
parent 64aad5255f
commit f45ab4139a
3 changed files with 146 additions and 0 deletions

View File

@ -561,6 +561,15 @@ namespace llvm {
/// pointer.
bool checkValidity(const SCEV *S) const;
// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be equal
// to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}. This is equivalent to
// proving no signed (resp. unsigned) wrap in {`Start`,+,`Step`} if
// `ExtendOpTy` is `SCEVSignExtendExpr` (resp. `SCEVZeroExtendExpr`).
//
template<typename ExtendOpTy>
bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
const Loop *L);
public:
static char ID; // Pass identification, replacement for typeid
ScalarEvolution();

View File

@ -1325,6 +1325,85 @@ static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
(SE->*GetExtendExpr)(PreStart, Ty));
}
// Try to prove away overflow by looking at "nearby" add recurrences. A
// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
//
// Formally:
//
// {S,+,X} == {S-T,+,X} + T
// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
//
// If ({S-T,+,X} + T) does not overflow ... (1)
//
// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
//
// If {S-T,+,X} does not overflow ... (2)
//
// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
// == {Ext(S-T)+Ext(T),+,Ext(X)}
//
// If (S-T)+T does not overflow ... (3)
//
// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
// == {Ext(S),+,Ext(X)} == LHS
//
// Thus, if (1), (2) and (3) are true for some T, then
// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
//
// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
// does not overflow" restricted to the 0th iteration. Therefore we only need
// to check for (1) and (2).
//
// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
// is `Delta` (defined below).
//
template <typename ExtendOpTy>
bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
const SCEV *Step,
const Loop *L) {
auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
// We restrict `Start` to a constant to prevent SCEV from spending too much
// time here. It is correct (but more expensive) to continue with a
// non-constant `Start` and do a general SCEV subtraction to compute
// `PreStart` below.
//
const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
if (!StartC)
return false;
APInt StartAI = StartC->getValue()->getValue();
for (unsigned Delta : {-2, -1, 1, 2}) {
const SCEV *PreStart = getConstant(StartAI - Delta);
// Give up if we don't already have the add recurrence we need because
// actually constructing an add recurrence is relatively expensive.
const SCEVAddRecExpr *PreAR = [&]() {
FoldingSetNodeID ID;
ID.AddInteger(scAddRecExpr);
ID.AddPointer(PreStart);
ID.AddPointer(Step);
ID.AddPointer(L);
void *IP = nullptr;
return static_cast<SCEVAddRecExpr *>(
UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
}();
if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
DeltaS, &Pred, this);
if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
return true;
}
}
return false;
}
const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Type *Ty) {
assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
@ -1473,6 +1552,13 @@ const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
}
}
}
if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
return getAddRecExpr(
getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
}
}
// The cast wasn't folded; create an explicit cast node.
@ -1664,6 +1750,13 @@ const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
}
}
if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
return getAddRecExpr(
getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
}
}
// The cast wasn't folded; create an explicit cast node.

View File

@ -0,0 +1,44 @@
; RUN: opt -analyze -scalar-evolution < %s | FileCheck %s
define void @f(i1* %condition) {
; CHECK-LABEL: Classifying expressions for: @f
entry:
br label %loop
loop:
%idx = phi i32 [ 0, %entry ], [ %idx.inc, %loop ]
%idx.inc = add nsw i32 %idx, 1
%idx.inc2 = add i32 %idx.inc, 1
%idx.inc2.zext = zext i32 %idx.inc2 to i64
; CHECK: %idx.inc2.zext = zext i32 %idx.inc2 to i64
; CHECK-NEXT: --> {2,+,1}<nuw><%loop>
%c = load volatile i1, i1* %condition
br i1 %c, label %loop, label %exit
exit:
ret void
}
define void @g(i1* %condition) {
; CHECK-LABEL: Classifying expressions for: @g
entry:
br label %loop
loop:
%idx = phi i32 [ 0, %entry ], [ %idx.inc, %loop ]
%idx.inc = add nsw i32 %idx, 3
%idx.inc2 = add i32 %idx.inc, -1
%idx.inc2.sext = sext i32 %idx.inc2 to i64
; CHECK: %idx.inc2.sext = sext i32 %idx.inc2 to i64
; CHECK-NEXT: --> {2,+,3}<nuw><nsw><%loop>
%c = load volatile i1, i1* %condition
br i1 %c, label %loop, label %exit
exit:
ret void
}