1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00

[SVE] Lower fixed length FP minnum/maxnum

Lower fixed length MINNUM/MAXNUM to scalable vectors. Cherry-picked from D71767 with added tests.

Differential Revision: https://reviews.llvm.org/D85744
This commit is contained in:
Cameron McInally 2020-08-12 12:00:37 -05:00
parent fdfc525664
commit f5557910ab
4 changed files with 635 additions and 0 deletions

View File

@ -1085,6 +1085,8 @@ void AArch64TargetLowering::addTypeForFixedLengthSVE(MVT VT) {
setOperationAction(ISD::FADD, VT, Custom); setOperationAction(ISD::FADD, VT, Custom);
setOperationAction(ISD::FDIV, VT, Custom); setOperationAction(ISD::FDIV, VT, Custom);
setOperationAction(ISD::FMA, VT, Custom); setOperationAction(ISD::FMA, VT, Custom);
setOperationAction(ISD::FMAXNUM, VT, Custom);
setOperationAction(ISD::FMINNUM, VT, Custom);
setOperationAction(ISD::FMUL, VT, Custom); setOperationAction(ISD::FMUL, VT, Custom);
setOperationAction(ISD::FSUB, VT, Custom); setOperationAction(ISD::FSUB, VT, Custom);
setOperationAction(ISD::LOAD, VT, Custom); setOperationAction(ISD::LOAD, VT, Custom);
@ -1513,8 +1515,10 @@ const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
MAKE_CASE(AArch64ISD::FDIV_PRED) MAKE_CASE(AArch64ISD::FDIV_PRED)
MAKE_CASE(AArch64ISD::FMA_PRED) MAKE_CASE(AArch64ISD::FMA_PRED)
MAKE_CASE(AArch64ISD::FMAXV_PRED) MAKE_CASE(AArch64ISD::FMAXV_PRED)
MAKE_CASE(AArch64ISD::FMAXNM_PRED)
MAKE_CASE(AArch64ISD::FMAXNMV_PRED) MAKE_CASE(AArch64ISD::FMAXNMV_PRED)
MAKE_CASE(AArch64ISD::FMINV_PRED) MAKE_CASE(AArch64ISD::FMINV_PRED)
MAKE_CASE(AArch64ISD::FMINNM_PRED)
MAKE_CASE(AArch64ISD::FMINNMV_PRED) MAKE_CASE(AArch64ISD::FMINNMV_PRED)
MAKE_CASE(AArch64ISD::FMUL_PRED) MAKE_CASE(AArch64ISD::FMUL_PRED)
MAKE_CASE(AArch64ISD::FSUB_PRED) MAKE_CASE(AArch64ISD::FSUB_PRED)
@ -3674,6 +3678,10 @@ SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
return LowerToScalableOp(Op, DAG); return LowerToScalableOp(Op, DAG);
case ISD::SUB: case ISD::SUB:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::SUB_PRED); return LowerToPredicatedOp(Op, DAG, AArch64ISD::SUB_PRED);
case ISD::FMAXNUM:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMAXNM_PRED);
case ISD::FMINNUM:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMINNM_PRED);
} }
} }

View File

@ -77,6 +77,8 @@ enum NodeType : unsigned {
FADD_PRED, FADD_PRED,
FDIV_PRED, FDIV_PRED,
FMA_PRED, FMA_PRED,
FMAXNM_PRED,
FMINNM_PRED,
FMUL_PRED, FMUL_PRED,
FSUB_PRED, FSUB_PRED,
MUL_PRED, MUL_PRED,

View File

@ -178,6 +178,8 @@ def AArch64asr_p : SDNode<"AArch64ISD::SRA_PRED", SDT_AArch64Arith>;
def AArch64fadd_p : SDNode<"AArch64ISD::FADD_PRED", SDT_AArch64Arith>; def AArch64fadd_p : SDNode<"AArch64ISD::FADD_PRED", SDT_AArch64Arith>;
def AArch64fdiv_p : SDNode<"AArch64ISD::FDIV_PRED", SDT_AArch64Arith>; def AArch64fdiv_p : SDNode<"AArch64ISD::FDIV_PRED", SDT_AArch64Arith>;
def AArch64fma_p : SDNode<"AArch64ISD::FMA_PRED", SDT_AArch64FMA>; def AArch64fma_p : SDNode<"AArch64ISD::FMA_PRED", SDT_AArch64FMA>;
def AArch64fmaxnm_p : SDNode<"AArch64ISD::FMAXNM_PRED", SDT_AArch64Arith>;
def AArch64fminnm_p : SDNode<"AArch64ISD::FMINNM_PRED", SDT_AArch64Arith>;
def AArch64fmul_p : SDNode<"AArch64ISD::FMUL_PRED", SDT_AArch64Arith>; def AArch64fmul_p : SDNode<"AArch64ISD::FMUL_PRED", SDT_AArch64Arith>;
def AArch64fsub_p : SDNode<"AArch64ISD::FSUB_PRED", SDT_AArch64Arith>; def AArch64fsub_p : SDNode<"AArch64ISD::FSUB_PRED", SDT_AArch64Arith>;
def AArch64lsl_p : SDNode<"AArch64ISD::SHL_PRED", SDT_AArch64Arith>; def AArch64lsl_p : SDNode<"AArch64ISD::SHL_PRED", SDT_AArch64Arith>;
@ -386,6 +388,8 @@ let Predicates = [HasSVE] in {
defm FADD_ZPZZ : sve_fp_bin_pred_hfd<AArch64fadd_p>; defm FADD_ZPZZ : sve_fp_bin_pred_hfd<AArch64fadd_p>;
defm FSUB_ZPZZ : sve_fp_bin_pred_hfd<AArch64fsub_p>; defm FSUB_ZPZZ : sve_fp_bin_pred_hfd<AArch64fsub_p>;
defm FMUL_ZPZZ : sve_fp_bin_pred_hfd<AArch64fmul_p>; defm FMUL_ZPZZ : sve_fp_bin_pred_hfd<AArch64fmul_p>;
defm FMAXNM_ZPZZ : sve_fp_bin_pred_hfd<AArch64fmaxnm_p>;
defm FMINNM_ZPZZ : sve_fp_bin_pred_hfd<AArch64fminnm_p>;
defm FDIV_ZPZZ : sve_fp_bin_pred_hfd<AArch64fdiv_p>; defm FDIV_ZPZZ : sve_fp_bin_pred_hfd<AArch64fdiv_p>;
let Predicates = [HasSVE, UseExperimentalZeroingPseudos] in { let Predicates = [HasSVE, UseExperimentalZeroingPseudos] in {

View File

@ -0,0 +1,621 @@
; RUN: llc -aarch64-sve-vector-bits-min=128 -asm-verbose=0 < %s | FileCheck %s -check-prefix=NO_SVE
; RUN: llc -aarch64-sve-vector-bits-min=256 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_EQ_256
; RUN: llc -aarch64-sve-vector-bits-min=384 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK
; RUN: llc -aarch64-sve-vector-bits-min=512 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512
; RUN: llc -aarch64-sve-vector-bits-min=640 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512
; RUN: llc -aarch64-sve-vector-bits-min=768 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512
; RUN: llc -aarch64-sve-vector-bits-min=896 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512
; RUN: llc -aarch64-sve-vector-bits-min=1024 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024
; RUN: llc -aarch64-sve-vector-bits-min=1152 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024
; RUN: llc -aarch64-sve-vector-bits-min=1280 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024
; RUN: llc -aarch64-sve-vector-bits-min=1408 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024
; RUN: llc -aarch64-sve-vector-bits-min=1536 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024
; RUN: llc -aarch64-sve-vector-bits-min=1664 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024
; RUN: llc -aarch64-sve-vector-bits-min=1792 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024
; RUN: llc -aarch64-sve-vector-bits-min=1920 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024
; RUN: llc -aarch64-sve-vector-bits-min=2048 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024,VBITS_GE_2048
target triple = "aarch64-unknown-linux-gnu"
; Don't use SVE when its registers are no bigger than NEON.
; NO_SVE-NOT: ptrue
;
; FMAXNM
;
; Don't use SVE for 64-bit vectors.
define <4 x half> @fmaxnm_v4f16(<4 x half> %op1, <4 x half> %op2) #0 {
; CHECK-LABEL: fmaxnm_v4f16:
; CHECK: fmaxnm v0.4h, v0.4h, v1.4h
; CHECK-NEXT: ret
%res = call <4 x half> @llvm.maxnum.v4f16(<4 x half> %op1, <4 x half> %op2)
ret <4 x half> %res
}
; Don't use SVE for 128-bit vectors.
define <8 x half> @fmaxnm_v8f16(<8 x half> %op1, <8 x half> %op2) #0 {
; CHECK-LABEL: fmaxnm_v8f16:
; CHECK: fmaxnm v0.8h, v0.8h, v1.8h
; CHECK-NEXT: ret
%res = call <8 x half> @llvm.maxnum.v8f16(<8 x half> %op1, <8 x half> %op2)
ret <8 x half> %res
}
define void @fmaxnm_v16f16(<16 x half>* %a, <16 x half>* %b) #0 {
; CHECK-LABEL: fmaxnm_v16f16:
; CHECK: ptrue [[PG:p[0-9]+]].h, vl16
; CHECK-DAG: ld1h { [[OP1:z[0-9]+]].h }, [[PG]]/z, [x0]
; CHECK-DAG: ld1h { [[OP2:z[0-9]+]].h }, [[PG]]/z, [x1]
; CHECK-NEXT: fmaxnm [[RES:z[0-9]+]].h, [[PG]]/m, [[OP1]].h, [[OP2]].h
; CHECK-NEXT: st1h { [[RES]].h }, [[PG]], [x0]
; CHECK-NEXT: ret
%op1 = load <16 x half>, <16 x half>* %a
%op2 = load <16 x half>, <16 x half>* %b
%res = call <16 x half> @llvm.maxnum.v16f16(<16 x half> %op1, <16 x half> %op2)
store <16 x half> %res, <16 x half>* %a
ret void
}
define void @fmaxnm_v32f16(<32 x half>* %a, <32 x half>* %b) #0 {
; CHECK-LABEL: fmaxnm_v32f16:
; VBITS_GE_512: ptrue [[PG:p[0-9]+]].h, vl32
; VBITS_GE_512-DAG: ld1h { [[OP1:z[0-9]+]].h }, [[PG]]/z, [x0]
; VBITS_GE_512-DAG: ld1h { [[OP2:z[0-9]+]].h }, [[PG]]/z, [x1]
; VBITS_GE_512-NEXT: fmaxnm [[RES:z[0-9]+]].h, [[PG]]/m, [[OP1]].h, [[OP2]].h
; VBITS_GE_512-NEXT: st1h { [[RES]].h }, [[PG]], [x0]
; VBITS_GE_512-NEXT: ret
; Ensure sensible type legalisation.
; VBITS_EQ_256-DAG: ptrue [[PG:p[0-9]+]].h, vl16
; VBITS_EQ_256-DAG: add x[[A_HI:[0-9]+]], x0, #32
; VBITS_EQ_256-DAG: add x[[B_HI:[0-9]+]], x1, #32
; VBITS_EQ_256-DAG: ld1h { [[OP1_LO:z[0-9]+]].h }, [[PG]]/z, [x0]
; VBITS_EQ_256-DAG: ld1h { [[OP1_HI:z[0-9]+]].h }, [[PG]]/z, [x[[A_HI]]]
; VBITS_EQ_256-DAG: ld1h { [[OP2_LO:z[0-9]+]].h }, [[PG]]/z, [x1]
; VBITS_EQ_256-DAG: ld1h { [[OP2_HI:z[0-9]+]].h }, [[PG]]/z, [x[[B_HI]]]
; VBITS_EQ_256-DAG: fmaxnm [[RES_LO:z[0-9]+]].h, [[PG]]/m, [[OP1_LO]].h, [[OP2_LO]].h
; VBITS_EQ_256-DAG: fmaxnm [[RES_HI:z[0-9]+]].h, [[PG]]/m, [[OP1_HI]].h, [[OP2_HI]].h
; VBITS_EQ_256-DAG: st1h { [[RES_LO]].h }, [[PG]], [x0]
; VBITS_EQ_256-DAG: st1h { [[RES_HI]].h }, [[PG]], [x[[A_HI]]
; VBITS_EQ_256-NEXT: ret
%op1 = load <32 x half>, <32 x half>* %a
%op2 = load <32 x half>, <32 x half>* %b
%res = call <32 x half> @llvm.maxnum.v32f16(<32 x half> %op1, <32 x half> %op2)
store <32 x half> %res, <32 x half>* %a
ret void
}
define void @fmaxnm_v64f16(<64 x half>* %a, <64 x half>* %b) #0 {
; CHECK-LABEL: fmaxnm_v64f16:
; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].h, vl64
; VBITS_GE_1024-DAG: ld1h { [[OP1:z[0-9]+]].h }, [[PG]]/z, [x0]
; VBITS_GE_1024-DAG: ld1h { [[OP2:z[0-9]+]].h }, [[PG]]/z, [x1]
; VBITS_GE_1024-NEXT: fmaxnm [[RES:z[0-9]+]].h, [[PG]]/m, [[OP1]].h, [[OP2]].h
; VBITS_GE_1024-NEXT: st1h { [[RES]].h }, [[PG]], [x0]
; VBITS_GE_1024-NEXT: ret
%op1 = load <64 x half>, <64 x half>* %a
%op2 = load <64 x half>, <64 x half>* %b
%res = call <64 x half> @llvm.maxnum.v64f16(<64 x half> %op1, <64 x half> %op2)
store <64 x half> %res, <64 x half>* %a
ret void
}
define void @fmaxnm_v128f16(<128 x half>* %a, <128 x half>* %b) #0 {
; CHECK-LABEL: fmaxnm_v128f16:
; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].h, vl128
; VBITS_GE_2048-DAG: ld1h { [[OP1:z[0-9]+]].h }, [[PG]]/z, [x0]
; VBITS_GE_2048-DAG: ld1h { [[OP2:z[0-9]+]].h }, [[PG]]/z, [x1]
; VBITS_GE_2048-NEXT: fmaxnm [[RES:z[0-9]+]].h, [[PG]]/m, [[OP1]].h, [[OP2]].h
; VBITS_GE_2048-NEXT: st1h { [[RES]].h }, [[PG]], [x0]
; VBITS_GE_2048-NEXT: ret
%op1 = load <128 x half>, <128 x half>* %a
%op2 = load <128 x half>, <128 x half>* %b
%res = call <128 x half> @llvm.maxnum.v128f16(<128 x half> %op1, <128 x half> %op2)
store <128 x half> %res, <128 x half>* %a
ret void
}
; Don't use SVE for 64-bit vectors.
define <2 x float> @fmaxnm_v2f32(<2 x float> %op1, <2 x float> %op2) #0 {
; CHECK-LABEL: fmaxnm_v2f32:
; CHECK: fmaxnm v0.2s, v0.2s, v1.2s
; CHECK-NEXT: ret
%res = call <2 x float> @llvm.maxnum.v2f32(<2 x float> %op1, <2 x float> %op2)
ret <2 x float> %res
}
; Don't use SVE for 128-bit vectors.
define <4 x float> @fmaxnm_v4f32(<4 x float> %op1, <4 x float> %op2) #0 {
; CHECK-LABEL: fmaxnm_v4f32:
; CHECK: fmaxnm v0.4s, v0.4s, v1.4s
; CHECK-NEXT: ret
%res = call <4 x float> @llvm.maxnum.v4f32(<4 x float> %op1, <4 x float> %op2)
ret <4 x float> %res
}
define void @fmaxnm_v8f32(<8 x float>* %a, <8 x float>* %b) #0 {
; CHECK-LABEL: fmaxnm_v8f32:
; CHECK: ptrue [[PG:p[0-9]+]].s, vl8
; CHECK-DAG: ld1w { [[OP1:z[0-9]+]].s }, [[PG]]/z, [x0]
; CHECK-DAG: ld1w { [[OP2:z[0-9]+]].s }, [[PG]]/z, [x1]
; CHECK-NEXT: fmaxnm [[RES:z[0-9]+]].s, [[PG]]/m, [[OP1]].s, [[OP2]].s
; CHECK-NEXT: st1w { [[RES]].s }, [[PG]], [x0]
; CHECK-NEXT: ret
%op1 = load <8 x float>, <8 x float>* %a
%op2 = load <8 x float>, <8 x float>* %b
%res = call <8 x float> @llvm.maxnum.v8f32(<8 x float> %op1, <8 x float> %op2)
store <8 x float> %res, <8 x float>* %a
ret void
}
define void @fmaxnm_v16f32(<16 x float>* %a, <16 x float>* %b) #0 {
; CHECK-LABEL: fmaxnm_v16f32:
; VBITS_GE_512: ptrue [[PG:p[0-9]+]].s, vl16
; VBITS_GE_512-DAG: ld1w { [[OP1:z[0-9]+]].s }, [[PG]]/z, [x0]
; VBITS_GE_512-DAG: ld1w { [[OP2:z[0-9]+]].s }, [[PG]]/z, [x1]
; VBITS_GE_512-NEXT: fmaxnm [[RES:z[0-9]+]].s, [[PG]]/m, [[OP1]].s, [[OP2]].s
; VBITS_GE_512-NEXT: st1w { [[RES]].s }, [[PG]], [x0]
; VBITS_GE_512-NEXT: ret
; Ensure sensible type legalisation.
; VBITS_EQ_256-DAG: ptrue [[PG:p[0-9]+]].s, vl8
; VBITS_EQ_256-DAG: add x[[A_HI:[0-9]+]], x0, #32
; VBITS_EQ_256-DAG: add x[[B_HI:[0-9]+]], x1, #32
; VBITS_EQ_256-DAG: ld1w { [[OP1_LO:z[0-9]+]].s }, [[PG]]/z, [x0]
; VBITS_EQ_256-DAG: ld1w { [[OP1_HI:z[0-9]+]].s }, [[PG]]/z, [x[[A_HI]]]
; VBITS_EQ_256-DAG: ld1w { [[OP2_LO:z[0-9]+]].s }, [[PG]]/z, [x1]
; VBITS_EQ_256-DAG: ld1w { [[OP2_HI:z[0-9]+]].s }, [[PG]]/z, [x[[B_HI]]]
; VBITS_EQ_256-DAG: fmaxnm [[RES_LO:z[0-9]+]].s, [[PG]]/m, [[OP1_LO]].s, [[OP2_LO]].s
; VBITS_EQ_256-DAG: fmaxnm [[RES_HI:z[0-9]+]].s, [[PG]]/m, [[OP1_HI]].s, [[OP2_HI]].s
; VBITS_EQ_256-DAG: st1w { [[RES_LO]].s }, [[PG]], [x0]
; VBITS_EQ_256-DAG: st1w { [[RES_HI]].s }, [[PG]], [x[[A_HI]]
; VBITS_EQ_256-NEXT: ret
%op1 = load <16 x float>, <16 x float>* %a
%op2 = load <16 x float>, <16 x float>* %b
%res = call <16 x float> @llvm.maxnum.v16f32(<16 x float> %op1, <16 x float> %op2)
store <16 x float> %res, <16 x float>* %a
ret void
}
define void @fmaxnm_v32f32(<32 x float>* %a, <32 x float>* %b) #0 {
; CHECK-LABEL: fmaxnm_v32f32:
; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].s, vl32
; VBITS_GE_1024-DAG: ld1w { [[OP1:z[0-9]+]].s }, [[PG]]/z, [x0]
; VBITS_GE_1024-DAG: ld1w { [[OP2:z[0-9]+]].s }, [[PG]]/z, [x1]
; VBITS_GE_1024-NEXT: fmaxnm [[RES:z[0-9]+]].s, [[PG]]/m, [[OP1]].s, [[OP2]].s
; VBITS_GE_1024-NEXT: st1w { [[RES]].s }, [[PG]], [x0]
; VBITS_GE_1024-NEXT: ret
%op1 = load <32 x float>, <32 x float>* %a
%op2 = load <32 x float>, <32 x float>* %b
%res = call <32 x float> @llvm.maxnum.v32f32(<32 x float> %op1, <32 x float> %op2)
store <32 x float> %res, <32 x float>* %a
ret void
}
define void @fmaxnm_v64f32(<64 x float>* %a, <64 x float>* %b) #0 {
; CHECK-LABEL: fmaxnm_v64f32:
; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].s, vl64
; VBITS_GE_2048-DAG: ld1w { [[OP1:z[0-9]+]].s }, [[PG]]/z, [x0]
; VBITS_GE_2048-DAG: ld1w { [[OP2:z[0-9]+]].s }, [[PG]]/z, [x1]
; VBITS_GE_2048-NEXT: fmaxnm [[RES:z[0-9]+]].s, [[PG]]/m, [[OP1]].s, [[OP2]].s
; VBITS_GE_2048-NEXT: st1w { [[RES]].s }, [[PG]], [x0]
; VBITS_GE_2048-NEXT: ret
%op1 = load <64 x float>, <64 x float>* %a
%op2 = load <64 x float>, <64 x float>* %b
%res = call <64 x float> @llvm.maxnum.v64f32(<64 x float> %op1, <64 x float> %op2)
store <64 x float> %res, <64 x float>* %a
ret void
}
; Don't use SVE for 64-bit vectors.
define <1 x double> @fmaxnm_v1f64(<1 x double> %op1, <1 x double> %op2) #0 {
; CHECK-LABEL: fmaxnm_v1f64:
; CHECK: fmaxnm d0, d0, d1
; CHECK-NEXT: ret
%res = call <1 x double> @llvm.maxnum.v1f64(<1 x double> %op1, <1 x double> %op2)
ret <1 x double> %res
}
; Don't use SVE for 128-bit vectors.
define <2 x double> @fmaxnm_v2f64(<2 x double> %op1, <2 x double> %op2) #0 {
; CHECK-LABEL: fmaxnm_v2f64:
; CHECK: fmaxnm v0.2d, v0.2d, v1.2d
; CHECK-NEXT: ret
%res = call <2 x double> @llvm.maxnum.v2f64(<2 x double> %op1, <2 x double> %op2)
ret <2 x double> %res
}
define void @fmaxnm_v4f64(<4 x double>* %a, <4 x double>* %b) #0 {
; CHECK-LABEL: fmaxnm_v4f64:
; CHECK: ptrue [[PG:p[0-9]+]].d, vl4
; CHECK-DAG: ld1d { [[OP1:z[0-9]+]].d }, [[PG]]/z, [x0]
; CHECK-DAG: ld1d { [[OP2:z[0-9]+]].d }, [[PG]]/z, [x1]
; CHECK-NEXT: fmaxnm [[RES:z[0-9]+]].d, [[PG]]/m, [[OP1]].d, [[OP2]].d
; CHECK-NEXT: st1d { [[RES]].d }, [[PG]], [x0]
; CHECK-NEXT: ret
%op1 = load <4 x double>, <4 x double>* %a
%op2 = load <4 x double>, <4 x double>* %b
%res = call <4 x double> @llvm.maxnum.v4f64(<4 x double> %op1, <4 x double> %op2)
store <4 x double> %res, <4 x double>* %a
ret void
}
define void @fmaxnm_v8f64(<8 x double>* %a, <8 x double>* %b) #0 {
; CHECK-LABEL: fmaxnm_v8f64:
; VBITS_GE_512: ptrue [[PG:p[0-9]+]].d, vl8
; VBITS_GE_512-DAG: ld1d { [[OP1:z[0-9]+]].d }, [[PG]]/z, [x0]
; VBITS_GE_512-DAG: ld1d { [[OP2:z[0-9]+]].d }, [[PG]]/z, [x1]
; VBITS_GE_512-NEXT: fmaxnm [[RES:z[0-9]+]].d, [[PG]]/m, [[OP1]].d, [[OP2]].d
; VBITS_GE_512-NEXT: st1d { [[RES]].d }, [[PG]], [x0]
; VBITS_GE_512-NEXT: ret
; Ensure sensible type legalisation.
; VBITS_EQ_256-DAG: ptrue [[PG:p[0-9]+]].d, vl4
; VBITS_EQ_256-DAG: add x[[A_HI:[0-9]+]], x0, #32
; VBITS_EQ_256-DAG: add x[[B_HI:[0-9]+]], x1, #32
; VBITS_EQ_256-DAG: ld1d { [[OP1_LO:z[0-9]+]].d }, [[PG]]/z, [x0]
; VBITS_EQ_256-DAG: ld1d { [[OP1_HI:z[0-9]+]].d }, [[PG]]/z, [x[[A_HI]]]
; VBITS_EQ_256-DAG: ld1d { [[OP2_LO:z[0-9]+]].d }, [[PG]]/z, [x1]
; VBITS_EQ_256-DAG: ld1d { [[OP2_HI:z[0-9]+]].d }, [[PG]]/z, [x[[B_HI]]]
; VBITS_EQ_256-DAG: fmaxnm [[RES_LO:z[0-9]+]].d, [[PG]]/m, [[OP1_LO]].d, [[OP2_LO]].d
; VBITS_EQ_256-DAG: fmaxnm [[RES_HI:z[0-9]+]].d, [[PG]]/m, [[OP1_HI]].d, [[OP2_HI]].d
; VBITS_EQ_256-DAG: st1d { [[RES_LO]].d }, [[PG]], [x0]
; VBITS_EQ_256-DAG: st1d { [[RES_HI]].d }, [[PG]], [x[[A_HI]]
; VBITS_EQ_256-NEXT: ret
%op1 = load <8 x double>, <8 x double>* %a
%op2 = load <8 x double>, <8 x double>* %b
%res = call <8 x double> @llvm.maxnum.v8f64(<8 x double> %op1, <8 x double> %op2)
store <8 x double> %res, <8 x double>* %a
ret void
}
define void @fmaxnm_v16f64(<16 x double>* %a, <16 x double>* %b) #0 {
; CHECK-LABEL: fmaxnm_v16f64:
; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].d, vl16
; VBITS_GE_1024-DAG: ld1d { [[OP1:z[0-9]+]].d }, [[PG]]/z, [x0]
; VBITS_GE_1024-DAG: ld1d { [[OP2:z[0-9]+]].d }, [[PG]]/z, [x1]
; VBITS_GE_1024-NEXT: fmaxnm [[RES:z[0-9]+]].d, [[PG]]/m, [[OP1]].d, [[OP2]].d
; VBITS_GE_1024-NEXT: st1d { [[RES]].d }, [[PG]], [x0]
; VBITS_GE_1024-NEXT: ret
%op1 = load <16 x double>, <16 x double>* %a
%op2 = load <16 x double>, <16 x double>* %b
%res = call <16 x double> @llvm.maxnum.v16f64(<16 x double> %op1, <16 x double> %op2)
store <16 x double> %res, <16 x double>* %a
ret void
}
define void @fmaxnm_v32f64(<32 x double>* %a, <32 x double>* %b) #0 {
; CHECK-LABEL: fmaxnm_v32f64:
; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].d, vl32
; VBITS_GE_2048-DAG: ld1d { [[OP1:z[0-9]+]].d }, [[PG]]/z, [x0]
; VBITS_GE_2048-DAG: ld1d { [[OP2:z[0-9]+]].d }, [[PG]]/z, [x1]
; VBITS_GE_2048-NEXT: fmaxnm [[RES:z[0-9]+]].d, [[PG]]/m, [[OP1]].d, [[OP2]].d
; VBITS_GE_2048-NEXT: st1d { [[RES]].d }, [[PG]], [x0]
; VBITS_GE_2048-NEXT: ret
%op1 = load <32 x double>, <32 x double>* %a
%op2 = load <32 x double>, <32 x double>* %b
%res = call <32 x double> @llvm.maxnum.v32f64(<32 x double> %op1, <32 x double> %op2)
store <32 x double> %res, <32 x double>* %a
ret void
}
;
; FMINNM
;
; Don't use SVE for 64-bit vectors.
define <4 x half> @fminnm_v4f16(<4 x half> %op1, <4 x half> %op2) #0 {
; CHECK-LABEL: fminnm_v4f16:
; CHECK: fminnm v0.4h, v0.4h, v1.4h
; CHECK-NEXT: ret
%res = call <4 x half> @llvm.minnum.v4f16(<4 x half> %op1, <4 x half> %op2)
ret <4 x half> %res
}
; Don't use SVE for 128-bit vectors.
define <8 x half> @fminnm_v8f16(<8 x half> %op1, <8 x half> %op2) #0 {
; CHECK-LABEL: fminnm_v8f16:
; CHECK: fminnm v0.8h, v0.8h, v1.8h
; CHECK-NEXT: ret
%res = call <8 x half> @llvm.minnum.v8f16(<8 x half> %op1, <8 x half> %op2)
ret <8 x half> %res
}
define void @fminnm_v16f16(<16 x half>* %a, <16 x half>* %b) #0 {
; CHECK-LABEL: fminnm_v16f16:
; CHECK: ptrue [[PG:p[0-9]+]].h, vl16
; CHECK-DAG: ld1h { [[OP1:z[0-9]+]].h }, [[PG]]/z, [x0]
; CHECK-DAG: ld1h { [[OP2:z[0-9]+]].h }, [[PG]]/z, [x1]
; CHECK-NEXT: fminnm [[RES:z[0-9]+]].h, [[PG]]/m, [[OP1]].h, [[OP2]].h
; CHECK-NEXT: st1h { [[RES]].h }, [[PG]], [x0]
; CHECK-NEXT: ret
%op1 = load <16 x half>, <16 x half>* %a
%op2 = load <16 x half>, <16 x half>* %b
%res = call <16 x half> @llvm.minnum.v16f16(<16 x half> %op1, <16 x half> %op2)
store <16 x half> %res, <16 x half>* %a
ret void
}
define void @fminnm_v32f16(<32 x half>* %a, <32 x half>* %b) #0 {
; CHECK-LABEL: fminnm_v32f16:
; VBITS_GE_512: ptrue [[PG:p[0-9]+]].h, vl32
; VBITS_GE_512-DAG: ld1h { [[OP1:z[0-9]+]].h }, [[PG]]/z, [x0]
; VBITS_GE_512-DAG: ld1h { [[OP2:z[0-9]+]].h }, [[PG]]/z, [x1]
; VBITS_GE_512-NEXT: fminnm [[RES:z[0-9]+]].h, [[PG]]/m, [[OP1]].h, [[OP2]].h
; VBITS_GE_512-NEXT: st1h { [[RES]].h }, [[PG]], [x0]
; VBITS_GE_512-NEXT: ret
; Ensure sensible type legalisation.
; VBITS_EQ_256-DAG: ptrue [[PG:p[0-9]+]].h, vl16
; VBITS_EQ_256-DAG: add x[[A_HI:[0-9]+]], x0, #32
; VBITS_EQ_256-DAG: add x[[B_HI:[0-9]+]], x1, #32
; VBITS_EQ_256-DAG: ld1h { [[OP1_LO:z[0-9]+]].h }, [[PG]]/z, [x0]
; VBITS_EQ_256-DAG: ld1h { [[OP1_HI:z[0-9]+]].h }, [[PG]]/z, [x[[A_HI]]]
; VBITS_EQ_256-DAG: ld1h { [[OP2_LO:z[0-9]+]].h }, [[PG]]/z, [x1]
; VBITS_EQ_256-DAG: ld1h { [[OP2_HI:z[0-9]+]].h }, [[PG]]/z, [x[[B_HI]]]
; VBITS_EQ_256-DAG: fminnm [[RES_LO:z[0-9]+]].h, [[PG]]/m, [[OP1_LO]].h, [[OP2_LO]].h
; VBITS_EQ_256-DAG: fminnm [[RES_HI:z[0-9]+]].h, [[PG]]/m, [[OP1_HI]].h, [[OP2_HI]].h
; VBITS_EQ_256-DAG: st1h { [[RES_LO]].h }, [[PG]], [x0]
; VBITS_EQ_256-DAG: st1h { [[RES_HI]].h }, [[PG]], [x[[A_HI]]
; VBITS_EQ_256-NEXT: ret
%op1 = load <32 x half>, <32 x half>* %a
%op2 = load <32 x half>, <32 x half>* %b
%res = call <32 x half> @llvm.minnum.v32f16(<32 x half> %op1, <32 x half> %op2)
store <32 x half> %res, <32 x half>* %a
ret void
}
define void @fminnm_v64f16(<64 x half>* %a, <64 x half>* %b) #0 {
; CHECK-LABEL: fminnm_v64f16:
; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].h, vl64
; VBITS_GE_1024-DAG: ld1h { [[OP1:z[0-9]+]].h }, [[PG]]/z, [x0]
; VBITS_GE_1024-DAG: ld1h { [[OP2:z[0-9]+]].h }, [[PG]]/z, [x1]
; VBITS_GE_1024-NEXT: fminnm [[RES:z[0-9]+]].h, [[PG]]/m, [[OP1]].h, [[OP2]].h
; VBITS_GE_1024-NEXT: st1h { [[RES]].h }, [[PG]], [x0]
; VBITS_GE_1024-NEXT: ret
%op1 = load <64 x half>, <64 x half>* %a
%op2 = load <64 x half>, <64 x half>* %b
%res = call <64 x half> @llvm.minnum.v64f16(<64 x half> %op1, <64 x half> %op2)
store <64 x half> %res, <64 x half>* %a
ret void
}
define void @fminnm_v128f16(<128 x half>* %a, <128 x half>* %b) #0 {
; CHECK-LABEL: fminnm_v128f16:
; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].h, vl128
; VBITS_GE_2048-DAG: ld1h { [[OP1:z[0-9]+]].h }, [[PG]]/z, [x0]
; VBITS_GE_2048-DAG: ld1h { [[OP2:z[0-9]+]].h }, [[PG]]/z, [x1]
; VBITS_GE_2048-NEXT: fminnm [[RES:z[0-9]+]].h, [[PG]]/m, [[OP1]].h, [[OP2]].h
; VBITS_GE_2048-NEXT: st1h { [[RES]].h }, [[PG]], [x0]
; VBITS_GE_2048-NEXT: ret
%op1 = load <128 x half>, <128 x half>* %a
%op2 = load <128 x half>, <128 x half>* %b
%res = call <128 x half> @llvm.minnum.v128f16(<128 x half> %op1, <128 x half> %op2)
store <128 x half> %res, <128 x half>* %a
ret void
}
; Don't use SVE for 64-bit vectors.
define <2 x float> @fminnm_v2f32(<2 x float> %op1, <2 x float> %op2) #0 {
; CHECK-LABEL: fminnm_v2f32:
; CHECK: fminnm v0.2s, v0.2s, v1.2s
; CHECK-NEXT: ret
%res = call <2 x float> @llvm.minnum.v2f32(<2 x float> %op1, <2 x float> %op2)
ret <2 x float> %res
}
; Don't use SVE for 128-bit vectors.
define <4 x float> @fminnm_v4f32(<4 x float> %op1, <4 x float> %op2) #0 {
; CHECK-LABEL: fminnm_v4f32:
; CHECK: fminnm v0.4s, v0.4s, v1.4s
; CHECK-NEXT: ret
%res = call <4 x float> @llvm.minnum.v4f32(<4 x float> %op1, <4 x float> %op2)
ret <4 x float> %res
}
define void @fminnm_v8f32(<8 x float>* %a, <8 x float>* %b) #0 {
; CHECK-LABEL: fminnm_v8f32:
; CHECK: ptrue [[PG:p[0-9]+]].s, vl8
; CHECK-DAG: ld1w { [[OP1:z[0-9]+]].s }, [[PG]]/z, [x0]
; CHECK-DAG: ld1w { [[OP2:z[0-9]+]].s }, [[PG]]/z, [x1]
; CHECK-NEXT: fminnm [[RES:z[0-9]+]].s, [[PG]]/m, [[OP1]].s, [[OP2]].s
; CHECK-NEXT: st1w { [[RES]].s }, [[PG]], [x0]
; CHECK-NEXT: ret
%op1 = load <8 x float>, <8 x float>* %a
%op2 = load <8 x float>, <8 x float>* %b
%res = call <8 x float> @llvm.minnum.v8f32(<8 x float> %op1, <8 x float> %op2)
store <8 x float> %res, <8 x float>* %a
ret void
}
define void @fminnm_v16f32(<16 x float>* %a, <16 x float>* %b) #0 {
; CHECK-LABEL: fminnm_v16f32:
; VBITS_GE_512: ptrue [[PG:p[0-9]+]].s, vl16
; VBITS_GE_512-DAG: ld1w { [[OP1:z[0-9]+]].s }, [[PG]]/z, [x0]
; VBITS_GE_512-DAG: ld1w { [[OP2:z[0-9]+]].s }, [[PG]]/z, [x1]
; VBITS_GE_512-NEXT: fminnm [[RES:z[0-9]+]].s, [[PG]]/m, [[OP1]].s, [[OP2]].s
; VBITS_GE_512-NEXT: st1w { [[RES]].s }, [[PG]], [x0]
; VBITS_GE_512-NEXT: ret
; Ensure sensible type legalisation.
; VBITS_EQ_256-DAG: ptrue [[PG:p[0-9]+]].s, vl8
; VBITS_EQ_256-DAG: add x[[A_HI:[0-9]+]], x0, #32
; VBITS_EQ_256-DAG: add x[[B_HI:[0-9]+]], x1, #32
; VBITS_EQ_256-DAG: ld1w { [[OP1_LO:z[0-9]+]].s }, [[PG]]/z, [x0]
; VBITS_EQ_256-DAG: ld1w { [[OP1_HI:z[0-9]+]].s }, [[PG]]/z, [x[[A_HI]]]
; VBITS_EQ_256-DAG: ld1w { [[OP2_LO:z[0-9]+]].s }, [[PG]]/z, [x1]
; VBITS_EQ_256-DAG: ld1w { [[OP2_HI:z[0-9]+]].s }, [[PG]]/z, [x[[B_HI]]]
; VBITS_EQ_256-DAG: fminnm [[RES_LO:z[0-9]+]].s, [[PG]]/m, [[OP1_LO]].s, [[OP2_LO]].s
; VBITS_EQ_256-DAG: fminnm [[RES_HI:z[0-9]+]].s, [[PG]]/m, [[OP1_HI]].s, [[OP2_HI]].s
; VBITS_EQ_256-DAG: st1w { [[RES_LO]].s }, [[PG]], [x0]
; VBITS_EQ_256-DAG: st1w { [[RES_HI]].s }, [[PG]], [x[[A_HI]]
; VBITS_EQ_256-NEXT: ret
%op1 = load <16 x float>, <16 x float>* %a
%op2 = load <16 x float>, <16 x float>* %b
%res = call <16 x float> @llvm.minnum.v16f32(<16 x float> %op1, <16 x float> %op2)
store <16 x float> %res, <16 x float>* %a
ret void
}
define void @fminnm_v32f32(<32 x float>* %a, <32 x float>* %b) #0 {
; CHECK-LABEL: fminnm_v32f32:
; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].s, vl32
; VBITS_GE_1024-DAG: ld1w { [[OP1:z[0-9]+]].s }, [[PG]]/z, [x0]
; VBITS_GE_1024-DAG: ld1w { [[OP2:z[0-9]+]].s }, [[PG]]/z, [x1]
; VBITS_GE_1024-NEXT: fminnm [[RES:z[0-9]+]].s, [[PG]]/m, [[OP1]].s, [[OP2]].s
; VBITS_GE_1024-NEXT: st1w { [[RES]].s }, [[PG]], [x0]
; VBITS_GE_1024-NEXT: ret
%op1 = load <32 x float>, <32 x float>* %a
%op2 = load <32 x float>, <32 x float>* %b
%res = call <32 x float> @llvm.minnum.v32f32(<32 x float> %op1, <32 x float> %op2)
store <32 x float> %res, <32 x float>* %a
ret void
}
define void @fminnm_v64f32(<64 x float>* %a, <64 x float>* %b) #0 {
; CHECK-LABEL: fminnm_v64f32:
; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].s, vl64
; VBITS_GE_2048-DAG: ld1w { [[OP1:z[0-9]+]].s }, [[PG]]/z, [x0]
; VBITS_GE_2048-DAG: ld1w { [[OP2:z[0-9]+]].s }, [[PG]]/z, [x1]
; VBITS_GE_2048-NEXT: fminnm [[RES:z[0-9]+]].s, [[PG]]/m, [[OP1]].s, [[OP2]].s
; VBITS_GE_2048-NEXT: st1w { [[RES]].s }, [[PG]], [x0]
; VBITS_GE_2048-NEXT: ret
%op1 = load <64 x float>, <64 x float>* %a
%op2 = load <64 x float>, <64 x float>* %b
%res = call <64 x float> @llvm.minnum.v64f32(<64 x float> %op1, <64 x float> %op2)
store <64 x float> %res, <64 x float>* %a
ret void
}
; Don't use SVE for 64-bit vectors.
define <1 x double> @fminnm_v1f64(<1 x double> %op1, <1 x double> %op2) #0 {
; CHECK-LABEL: fminnm_v1f64:
; CHECK: fminnm d0, d0, d1
; CHECK-NEXT: ret
%res = call <1 x double> @llvm.minnum.v1f64(<1 x double> %op1, <1 x double> %op2)
ret <1 x double> %res
}
; Don't use SVE for 128-bit vectors.
define <2 x double> @fminnm_v2f64(<2 x double> %op1, <2 x double> %op2) #0 {
; CHECK-LABEL: fminnm_v2f64:
; CHECK: fminnm v0.2d, v0.2d, v1.2d
; CHECK-NEXT: ret
%res = call <2 x double> @llvm.minnum.v2f64(<2 x double> %op1, <2 x double> %op2)
ret <2 x double> %res
}
define void @fminnm_v4f64(<4 x double>* %a, <4 x double>* %b) #0 {
; CHECK-LABEL: fminnm_v4f64:
; CHECK: ptrue [[PG:p[0-9]+]].d, vl4
; CHECK-DAG: ld1d { [[OP1:z[0-9]+]].d }, [[PG]]/z, [x0]
; CHECK-DAG: ld1d { [[OP2:z[0-9]+]].d }, [[PG]]/z, [x1]
; CHECK-NEXT: fminnm [[RES:z[0-9]+]].d, [[PG]]/m, [[OP1]].d, [[OP2]].d
; CHECK-NEXT: st1d { [[RES]].d }, [[PG]], [x0]
; CHECK-NEXT: ret
%op1 = load <4 x double>, <4 x double>* %a
%op2 = load <4 x double>, <4 x double>* %b
%res = call <4 x double> @llvm.minnum.v4f64(<4 x double> %op1, <4 x double> %op2)
store <4 x double> %res, <4 x double>* %a
ret void
}
define void @fminnm_v8f64(<8 x double>* %a, <8 x double>* %b) #0 {
; CHECK-LABEL: fminnm_v8f64:
; VBITS_GE_512: ptrue [[PG:p[0-9]+]].d, vl8
; VBITS_GE_512-DAG: ld1d { [[OP1:z[0-9]+]].d }, [[PG]]/z, [x0]
; VBITS_GE_512-DAG: ld1d { [[OP2:z[0-9]+]].d }, [[PG]]/z, [x1]
; VBITS_GE_512-NEXT: fminnm [[RES:z[0-9]+]].d, [[PG]]/m, [[OP1]].d, [[OP2]].d
; VBITS_GE_512-NEXT: st1d { [[RES]].d }, [[PG]], [x0]
; VBITS_GE_512-NEXT: ret
; Ensure sensible type legalisation.
; VBITS_EQ_256-DAG: ptrue [[PG:p[0-9]+]].d, vl4
; VBITS_EQ_256-DAG: add x[[A_HI:[0-9]+]], x0, #32
; VBITS_EQ_256-DAG: add x[[B_HI:[0-9]+]], x1, #32
; VBITS_EQ_256-DAG: ld1d { [[OP1_LO:z[0-9]+]].d }, [[PG]]/z, [x0]
; VBITS_EQ_256-DAG: ld1d { [[OP1_HI:z[0-9]+]].d }, [[PG]]/z, [x[[A_HI]]]
; VBITS_EQ_256-DAG: ld1d { [[OP2_LO:z[0-9]+]].d }, [[PG]]/z, [x1]
; VBITS_EQ_256-DAG: ld1d { [[OP2_HI:z[0-9]+]].d }, [[PG]]/z, [x[[B_HI]]]
; VBITS_EQ_256-DAG: fminnm [[RES_LO:z[0-9]+]].d, [[PG]]/m, [[OP1_LO]].d, [[OP2_LO]].d
; VBITS_EQ_256-DAG: fminnm [[RES_HI:z[0-9]+]].d, [[PG]]/m, [[OP1_HI]].d, [[OP2_HI]].d
; VBITS_EQ_256-DAG: st1d { [[RES_LO]].d }, [[PG]], [x0]
; VBITS_EQ_256-DAG: st1d { [[RES_HI]].d }, [[PG]], [x[[A_HI]]
; VBITS_EQ_256-NEXT: ret
%op1 = load <8 x double>, <8 x double>* %a
%op2 = load <8 x double>, <8 x double>* %b
%res = call <8 x double> @llvm.minnum.v8f64(<8 x double> %op1, <8 x double> %op2)
store <8 x double> %res, <8 x double>* %a
ret void
}
define void @fminnm_v16f64(<16 x double>* %a, <16 x double>* %b) #0 {
; CHECK-LABEL: fminnm_v16f64:
; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].d, vl16
; VBITS_GE_1024-DAG: ld1d { [[OP1:z[0-9]+]].d }, [[PG]]/z, [x0]
; VBITS_GE_1024-DAG: ld1d { [[OP2:z[0-9]+]].d }, [[PG]]/z, [x1]
; VBITS_GE_1024-NEXT: fminnm [[RES:z[0-9]+]].d, [[PG]]/m, [[OP1]].d, [[OP2]].d
; VBITS_GE_1024-NEXT: st1d { [[RES]].d }, [[PG]], [x0]
; VBITS_GE_1024-NEXT: ret
%op1 = load <16 x double>, <16 x double>* %a
%op2 = load <16 x double>, <16 x double>* %b
%res = call <16 x double> @llvm.minnum.v16f64(<16 x double> %op1, <16 x double> %op2)
store <16 x double> %res, <16 x double>* %a
ret void
}
define void @fminnm_v32f64(<32 x double>* %a, <32 x double>* %b) #0 {
; CHECK-LABEL: fminnm_v32f64:
; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].d, vl32
; VBITS_GE_2048-DAG: ld1d { [[OP1:z[0-9]+]].d }, [[PG]]/z, [x0]
; VBITS_GE_2048-DAG: ld1d { [[OP2:z[0-9]+]].d }, [[PG]]/z, [x1]
; VBITS_GE_2048-NEXT: fminnm [[RES:z[0-9]+]].d, [[PG]]/m, [[OP1]].d, [[OP2]].d
; VBITS_GE_2048-NEXT: st1d { [[RES]].d }, [[PG]], [x0]
; VBITS_GE_2048-NEXT: ret
%op1 = load <32 x double>, <32 x double>* %a
%op2 = load <32 x double>, <32 x double>* %b
%res = call <32 x double> @llvm.minnum.v32f64(<32 x double> %op1, <32 x double> %op2)
store <32 x double> %res, <32 x double>* %a
ret void
}
attributes #0 = { "target-features"="+sve" }
declare <4 x half> @llvm.minnum.v4f16(<4 x half>, <4 x half>)
declare <8 x half> @llvm.minnum.v8f16(<8 x half>, <8 x half>)
declare <16 x half> @llvm.minnum.v16f16(<16 x half>, <16 x half>)
declare <32 x half> @llvm.minnum.v32f16(<32 x half>, <32 x half>)
declare <64 x half> @llvm.minnum.v64f16(<64 x half>, <64 x half>)
declare <128 x half> @llvm.minnum.v128f16(<128 x half>, <128 x half>)
declare <2 x float> @llvm.minnum.v2f32(<2 x float>, <2 x float>)
declare <4 x float> @llvm.minnum.v4f32(<4 x float>, <4 x float>)
declare <8 x float> @llvm.minnum.v8f32(<8 x float>, <8 x float>)
declare <16 x float> @llvm.minnum.v16f32(<16 x float>, <16 x float>)
declare <32 x float> @llvm.minnum.v32f32(<32 x float>, <32 x float>)
declare <64 x float> @llvm.minnum.v64f32(<64 x float>, <64 x float>)
declare <1 x double> @llvm.minnum.v1f64(<1 x double>, <1 x double>)
declare <2 x double> @llvm.minnum.v2f64(<2 x double>, <2 x double>)
declare <4 x double> @llvm.minnum.v4f64(<4 x double>, <4 x double>)
declare <8 x double> @llvm.minnum.v8f64(<8 x double>, <8 x double>)
declare <16 x double> @llvm.minnum.v16f64(<16 x double>, <16 x double>)
declare <32 x double> @llvm.minnum.v32f64(<32 x double>, <32 x double>)
declare <4 x half> @llvm.maxnum.v4f16(<4 x half>, <4 x half>)
declare <8 x half> @llvm.maxnum.v8f16(<8 x half>, <8 x half>)
declare <16 x half> @llvm.maxnum.v16f16(<16 x half>, <16 x half>)
declare <32 x half> @llvm.maxnum.v32f16(<32 x half>, <32 x half>)
declare <64 x half> @llvm.maxnum.v64f16(<64 x half>, <64 x half>)
declare <128 x half> @llvm.maxnum.v128f16(<128 x half>, <128 x half>)
declare <2 x float> @llvm.maxnum.v2f32(<2 x float>, <2 x float>)
declare <4 x float> @llvm.maxnum.v4f32(<4 x float>, <4 x float>)
declare <8 x float> @llvm.maxnum.v8f32(<8 x float>, <8 x float>)
declare <16 x float> @llvm.maxnum.v16f32(<16 x float>, <16 x float>)
declare <32 x float> @llvm.maxnum.v32f32(<32 x float>, <32 x float>)
declare <64 x float> @llvm.maxnum.v64f32(<64 x float>, <64 x float>)
declare <1 x double> @llvm.maxnum.v1f64(<1 x double>, <1 x double>)
declare <2 x double> @llvm.maxnum.v2f64(<2 x double>, <2 x double>)
declare <4 x double> @llvm.maxnum.v4f64(<4 x double>, <4 x double>)
declare <8 x double> @llvm.maxnum.v8f64(<8 x double>, <8 x double>)
declare <16 x double> @llvm.maxnum.v16f64(<16 x double>, <16 x double>)
declare <32 x double> @llvm.maxnum.v32f64(<32 x double>, <32 x double>)