1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 03:53:04 +02:00

[LV] Enable vectorization of loops where the IV has an external use

Vectorizing loops with "escaping" IVs has been disabled since r190790, due to
PR17179. This re-enables it, with support for external use of both
"post-increment" (last iteration) and "pre-increment" (second-to-last iteration)
IVs.

Differential Revision: http://reviews.llvm.org/D21048

llvm-svn: 272715
This commit is contained in:
Michael Kuperstein 2016-06-14 21:27:27 +00:00
parent c44b23bca7
commit f599de80e4
3 changed files with 164 additions and 58 deletions

View File

@ -355,6 +355,12 @@ protected:
/// Create an empty loop, based on the loop ranges of the old loop.
void createEmptyLoop();
/// Set up the values of the IVs correctly when exiting the vector loop.
void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
Value *CountRoundDown, Value *EndValue,
BasicBlock *MiddleBlock);
/// Create a new induction variable inside L.
PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
Value *Step, Instruction *DL);
@ -1433,13 +1439,11 @@ private:
/// invariant.
void collectStridedAccess(Value *LoadOrStoreInst);
/// \brief Returns true if we can vectorize using this PHI node as an
/// induction.
///
/// Updates the vectorization state by adding \p Phi to the inductions list.
/// This can set \p Phi as the main induction of the loop if \p Phi is a
/// better choice for the main induction than the existing one.
bool addInductionPhi(PHINode *Phi, InductionDescriptor ID);
void addInductionPhi(PHINode *Phi, InductionDescriptor ID,
SmallPtrSetImpl<Value *> &AllowedExit);
/// Report an analysis message to assist the user in diagnosing loops that are
/// not vectorized. These are handled as LoopAccessReport rather than
@ -1493,7 +1497,7 @@ private:
/// Holds the widest induction type encountered.
Type *WidestIndTy;
/// Allowed outside users. This holds the reduction
/// Allowed outside users. This holds the induction and reduction
/// vars which can be accessed from outside the loop.
SmallPtrSet<Value *, 4> AllowedExit;
/// This set holds the variables which are known to be uniform after
@ -3219,6 +3223,9 @@ void InnerLoopVectorizer::createEmptyLoop() {
// or the value at the end of the vectorized loop.
BCResumeVal->addIncoming(EndValue, MiddleBlock);
// Fix up external users of the induction variable.
fixupIVUsers(OrigPhi, II, CountRoundDown, EndValue, MiddleBlock);
// Fix the scalar body counter (PHI node).
unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
@ -3258,6 +3265,59 @@ void InnerLoopVectorizer::createEmptyLoop() {
Hints.setAlreadyVectorized();
}
// Fix up external users of the induction variable. At this point, we are
// in LCSSA form, with all external PHIs that use the IV having one input value,
// coming from the remainder loop. We need those PHIs to also have a correct
// value for the IV when arriving directly from the middle block.
void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
const InductionDescriptor &II,
Value *CountRoundDown, Value *EndValue,
BasicBlock *MiddleBlock) {
// There are two kinds of external IV usages - those that use the value
// computed in the last iteration (the PHI) and those that use the penultimate
// value (the value that feeds into the phi from the loop latch).
// We allow both, but they, obviously, have different values.
// We only expect at most one of each kind of user. This is because LCSSA will
// canonicalize the users to a single PHI node per exit block, and we
// currently only vectorize loops with a single exit.
assert(OrigLoop->getExitBlock() && "Expected a single exit block");
// An external user of the last iteration's value should see the value that
// the remainder loop uses to initialize its own IV.
Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
for (User *U : PostInc->users()) {
Instruction *UI = cast<Instruction>(U);
if (!OrigLoop->contains(UI)) {
assert(isa<PHINode>(UI) && "Expected LCSSA form");
cast<PHINode>(UI)->addIncoming(EndValue, MiddleBlock);
break;
}
}
// An external user of the penultimate value need to see EndValue - Step.
// The simplest way to get this is to recompute it from the constituent SCEVs,
// that is Start + (Step * (CRD - 1)).
for (User *U : OrigPhi->users()) {
Instruction *UI = cast<Instruction>(U);
if (!OrigLoop->contains(UI)) {
assert(isa<PHINode>(UI) && "Expected LCSSA form");
const DataLayout &DL =
OrigLoop->getHeader()->getModule()->getDataLayout();
IRBuilder<> B(MiddleBlock->getTerminator());
Value *CountMinusOne = B.CreateSub(
CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(),
"cast.cmo");
Value *Escape = II.transform(B, CMO, PSE.getSE(), DL);
Escape->setName("ind.escape");
cast<PHINode>(UI)->addIncoming(Escape, MiddleBlock);
break;
}
}
}
namespace {
struct CSEDenseMapInfo {
static bool canHandle(Instruction *I) {
@ -4639,10 +4699,10 @@ static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
/// \brief Check that the instruction has outside loop users and is not an
/// identified reduction variable.
static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
SmallPtrSetImpl<Value *> &Reductions) {
// Reduction instructions are allowed to have exit users. All other
// instructions must not have external users.
if (!Reductions.count(Inst))
SmallPtrSetImpl<Value *> &AllowedExit) {
// Reduction and Induction instructions are allowed to have exit users. All
// other instructions must not have external users.
if (!AllowedExit.count(Inst))
// Check that all of the users of the loop are inside the BB.
for (User *U : Inst->users()) {
Instruction *UI = cast<Instruction>(U);
@ -4655,8 +4715,9 @@ static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
return false;
}
bool LoopVectorizationLegality::addInductionPhi(PHINode *Phi,
InductionDescriptor ID) {
void LoopVectorizationLegality::addInductionPhi(
PHINode *Phi, InductionDescriptor ID,
SmallPtrSetImpl<Value *> &AllowedExit) {
Inductions[Phi] = ID;
Type *PhiTy = Phi->getType();
const DataLayout &DL = Phi->getModule()->getDataLayout();
@ -4682,18 +4743,13 @@ bool LoopVectorizationLegality::addInductionPhi(PHINode *Phi,
Induction = Phi;
}
// Both the PHI node itself, and the "post-increment" value feeding
// back into the PHI node may have external users.
AllowedExit.insert(Phi);
AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
DEBUG(dbgs() << "LV: Found an induction variable.\n");
// Until we explicitly handle the case of an induction variable with
// an outside loop user we have to give up vectorizing this loop.
if (hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) {
emitAnalysis(VectorizationReport(Phi) <<
"use of induction value outside of the "
"loop is not handled by vectorizer");
return false;
}
return true;
return;
}
bool LoopVectorizationLegality::canVectorizeInstrs() {
@ -4757,8 +4813,7 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
InductionDescriptor ID;
if (InductionDescriptor::isInductionPHI(Phi, PSE, ID)) {
if (!addInductionPhi(Phi, ID))
return false;
addInductionPhi(Phi, ID, AllowedExit);
continue;
}
@ -4770,8 +4825,7 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
// As a last resort, coerce the PHI to a AddRec expression
// and re-try classifying it a an induction PHI.
if (InductionDescriptor::isInductionPHI(Phi, PSE, ID, true)) {
if (!addInductionPhi(Phi, ID))
return false;
addInductionPhi(Phi, ID, AllowedExit);
continue;
}

View File

@ -0,0 +1,84 @@
; RUN: opt -S -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 < %s | FileCheck %s
; CHECK-LABEL: @postinc
; CHECK-LABEL: scalar.ph:
; CHECK: %bc.resume.val = phi i32 [ %n.vec, %middle.block ], [ 0, %entry ]
; CHECK-LABEL: for.end:
; CHECK: %[[RET:.*]] = phi i32 [ {{.*}}, %for.body ], [ %n.vec, %middle.block ]
; CHECK: ret i32 %[[RET]]
define i32 @postinc(i32 %k) {
entry:
br label %for.body
for.body:
%inc.phi = phi i32 [ 0, %entry ], [ %inc, %for.body ]
%inc = add nsw i32 %inc.phi, 1
%cmp = icmp eq i32 %inc, %k
br i1 %cmp, label %for.end, label %for.body
for.end:
ret i32 %inc
}
; CHECK-LABEL: @preinc
; CHECK-LABEL: middle.block:
; CHECK: %3 = sub i32 %n.vec, 1
; CHECK: %ind.escape = add i32 0, %3
; CHECK-LABEL: scalar.ph:
; CHECK: %bc.resume.val = phi i32 [ %n.vec, %middle.block ], [ 0, %entry ]
; CHECK-LABEL: for.end:
; CHECK: %[[RET:.*]] = phi i32 [ {{.*}}, %for.body ], [ %ind.escape, %middle.block ]
; CHECK: ret i32 %[[RET]]
define i32 @preinc(i32 %k) {
entry:
br label %for.body
for.body:
%inc.phi = phi i32 [ 0, %entry ], [ %inc, %for.body ]
%inc = add nsw i32 %inc.phi, 1
%cmp = icmp eq i32 %inc, %k
br i1 %cmp, label %for.end, label %for.body
for.end:
ret i32 %inc.phi
}
; CHECK-LABEL: @constpre
; CHECK-LABEL: for.end:
; CHECK: %[[RET:.*]] = phi i32 [ {{.*}}, %for.body ], [ 2, %middle.block ]
; CHECK: ret i32 %[[RET]]
define i32 @constpre() {
entry:
br label %for.body
for.body:
%inc.phi = phi i32 [ 32, %entry ], [ %inc, %for.body ]
%inc = sub nsw i32 %inc.phi, 2
%cmp = icmp eq i32 %inc, 0
br i1 %cmp, label %for.end, label %for.body
for.end:
ret i32 %inc.phi
}
; CHECK-LABEL: @geppre
; CHECK-LABEL: middle.block:
; CHECK: %ind.escape = getelementptr i32, i32* %ptr, i64 124
; CHECK-LABEL: for.end:
; CHECK: %[[RET:.*]] = phi i32* [ {{.*}}, %for.body ], [ %ind.escape, %middle.block ]
; CHECK: ret i32* %[[RET]]
define i32* @geppre(i32* %ptr) {
entry:
br label %for.body
for.body:
%inc.phi = phi i32 [ 0, %entry ], [ %inc, %for.body ]
%ptr.phi = phi i32* [ %ptr, %entry ], [ %inc.ptr, %for.body ]
%inc = add nsw i32 %inc.phi, 1
%inc.ptr = getelementptr i32, i32* %ptr.phi, i32 4
%cmp = icmp eq i32 %inc, 32
br i1 %cmp, label %for.end, label %for.body
for.end:
ret i32* %ptr.phi
}

View File

@ -1,7 +1,6 @@
; RUN: opt -S -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 < %s 2>&1 | FileCheck %s
; CHECK: remark: {{.*}}: loop not vectorized: value could not be identified as an induction or reduction variable
; CHECK: remark: {{.*}}: loop not vectorized: use of induction value outside of the loop is not handled by vectorizer
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:32:32-n8:16:32-S128"
@ -41,34 +40,3 @@ f1.exit.loopexit:
%.lcssa = phi i32 [ %tmp17, %bb16 ]
ret i32 %.lcssa
}
; Don't vectorize this loop. Its phi node (induction variable) has an outside
; loop user. We currently don't handle this case.
; PR17179
; CHECK-LABEL: @test2(
; CHECK-NOT: <2 x
@x1 = common global i32 0, align 4
@x2 = common global i32 0, align 4
@x0 = common global i32 0, align 4
define i32 @test2() {
entry:
store i32 0, i32* @x1, align 4
%0 = load i32, i32* @x0, align 4
br label %for.cond1.preheader
for.cond1.preheader:
%inc7 = phi i32 [ 0, %entry ], [ %inc, %for.cond1.preheader ]
%inc = add nsw i32 %inc7, 1
%cmp = icmp eq i32 %inc, 52
br i1 %cmp, label %for.end5, label %for.cond1.preheader
for.end5:
%inc7.lcssa = phi i32 [ %inc7, %for.cond1.preheader ]
%xor = xor i32 %inc7.lcssa, %0
store i32 52, i32* @x1, align 4
store i32 1, i32* @x2, align 4
ret i32 %xor
}