1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-01-31 12:41:49 +01:00

[SCEV] Factor out isKnownViaInduction. NFC.

This just extracts the isKnownViaInduction from isKnownPredicate.

Reviewers: sanjoy, mkazantsev, reames
Reviewed By: mkazantsev
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44554

llvm-svn: 327824
This commit is contained in:
Serguei Katkov 2018-03-19 08:32:09 +00:00
parent ee51ad3ba8
commit f7b67d048b
2 changed files with 59 additions and 49 deletions

View File

@ -848,6 +848,27 @@ public:
std::pair<const SCEV *, const SCEV *> SplitIntoInitAndPostInc(const Loop *L,
const SCEV *S);
/// We'd like to check the predicate on every iteration of the most dominated
/// loop between loops used in LHS and RHS.
/// To do this we use the following list of steps:
/// 1. Collect set S all loops on which either LHS or RHS depend.
/// 2. If S is non-empty
/// a. Let PD be the element of S which is dominated by all other elements.
/// b. Let E(LHS) be value of LHS on entry of PD.
/// To get E(LHS), we should just take LHS and replace all AddRecs that are
/// attached to PD on with their entry values.
/// Define E(RHS) in the same way.
/// c. Let B(LHS) be value of L on backedge of PD.
/// To get B(LHS), we should just take LHS and replace all AddRecs that are
/// attached to PD on with their backedge values.
/// Define B(RHS) in the same way.
/// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD,
/// so we can assert on that.
/// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) &&
/// isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS))
bool isKnownViaInduction(ICmpInst::Predicate Pred, const SCEV *LHS,
const SCEV *RHS);
/// Test if the given expression is known to satisfy the condition described
/// by Pred, LHS, and RHS.
bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,

View File

@ -8687,35 +8687,16 @@ ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
return { Start, PostInc };
}
bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS) {
// Canonicalize the inputs first.
(void)SimplifyICmpOperands(Pred, LHS, RHS);
// We'd like to check the predicate on every iteration of the most dominated
// loop between loops used in LHS and RHS.
// To do this we use the following list of steps:
// 1. Collect set S all loops on which either LHS or RHS depend.
// 2. If S is non-empty
// a. Let PD be the element of S which is dominated by all other elements of S
// b. Let E(LHS) be value of LHS on entry of PD.
// To get E(LHS), we should just take LHS and replace all AddRecs that are
// attached to PD on with their entry values.
// Define E(RHS) in the same way.
// c. Let B(LHS) be value of L on backedge of PD.
// To get B(LHS), we should just take LHS and replace all AddRecs that are
// attached to PD on with their backedge values.
// Define B(RHS) in the same way.
// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD,
// so we can assert on that.
// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) &&
// isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS))
// First collect all loops.
SmallPtrSet<const Loop *, 8> LoopsUsed;
getUsedLoops(LHS, LoopsUsed);
getUsedLoops(RHS, LoopsUsed);
if (LoopsUsed.empty())
return false;
// Domination relationship must be a linear order on collected loops.
#ifndef NDEBUG
for (auto *L1 : LoopsUsed)
@ -8724,7 +8705,7 @@ bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
DT.dominates(L2->getHeader(), L1->getHeader())) &&
"Domination relationship is not a linear order");
#endif
if (!LoopsUsed.empty()) {
const Loop *MDL = *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
[&](const Loop *L1, const Loop *L2) {
return DT.dominates(L1->getHeader(), L2->getHeader());
@ -8732,27 +8713,35 @@ bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
// Get init and post increment value for LHS.
auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
if (SplitLHS.first != getCouldNotCompute()) {
// if LHS does not contain unknown non-invariant SCEV then
// get init and post increment value for RHS.
// if LHS contains unknown non-invariant SCEV then bail out.
if (SplitLHS.first == getCouldNotCompute())
return false;
assert (SplitLHS.first != getCouldNotCompute() && "Unexpected CNC");
// Get init and post increment value for RHS.
auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
if (SplitRHS.first != getCouldNotCompute()) {
// if RHS does not contain unknown non-invariant SCEV then
// check whether implication is possible.
// if RHS contains unknown non-invariant SCEV then bail out.
if (SplitRHS.first == getCouldNotCompute())
return false;
assert (SplitRHS.first != getCouldNotCompute() && "Unexpected CNC");
// It is possible that init SCEV contains an invariant load but it does
// not dominate MDL and is not available at MDL loop entry, so we should
// check it here.
if (isAvailableAtLoopEntry(SplitLHS.first, MDL) &&
isAvailableAtLoopEntry(SplitRHS.first, MDL)) {
if (isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first,
SplitRHS.first) &&
if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
!isAvailableAtLoopEntry(SplitRHS.first, MDL))
return false;
return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) &&
isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
SplitRHS.second))
SplitRHS.second);
}
bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS) {
// Canonicalize the inputs first.
(void)SimplifyICmpOperands(Pred, LHS, RHS);
if (isKnownViaInduction(Pred, LHS, RHS))
return true;
}
}
}
}
if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
return true;