1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 02:52:53 +02:00

Revert r311077: [LV] Using VPlan ...

This causes LLVM to assert fail on PPC64 and crash / infloop in other
cases. Filed http://llvm.org/PR34248 with reproducer attached.

llvm-svn: 311304
This commit is contained in:
Chandler Carruth 2017-08-20 23:17:11 +00:00
parent 0ab67021c0
commit f802228b0f
9 changed files with 558 additions and 2279 deletions

View File

@ -3,7 +3,6 @@ add_llvm_library(LLVMVectorize
LoopVectorize.cpp
SLPVectorizer.cpp
Vectorize.cpp
VPlan.cpp
ADDITIONAL_HEADER_DIRS
${LLVM_MAIN_INCLUDE_DIR}/llvm/Transforms

File diff suppressed because it is too large Load Diff

View File

@ -1,401 +0,0 @@
//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This is the LLVM vectorization plan. It represents a candidate for
/// vectorization, allowing to plan and optimize how to vectorize a given loop
/// before generating LLVM-IR.
/// The vectorizer uses vectorization plans to estimate the costs of potential
/// candidates and if profitable to execute the desired plan, generating vector
/// LLVM-IR code.
///
//===----------------------------------------------------------------------===//
#include "VPlan.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
#define DEBUG_TYPE "vplan"
/// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
const VPBlockBase *Block = this;
while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
Block = Region->getEntry();
return cast<VPBasicBlock>(Block);
}
VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
VPBlockBase *Block = this;
while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
Block = Region->getEntry();
return cast<VPBasicBlock>(Block);
}
/// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
const VPBlockBase *Block = this;
while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
Block = Region->getExit();
return cast<VPBasicBlock>(Block);
}
VPBasicBlock *VPBlockBase::getExitBasicBlock() {
VPBlockBase *Block = this;
while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
Block = Region->getExit();
return cast<VPBasicBlock>(Block);
}
VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
if (!Successors.empty() || !Parent)
return this;
assert(Parent->getExit() == this &&
"Block w/o successors not the exit of its parent.");
return Parent->getEnclosingBlockWithSuccessors();
}
VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
if (!Predecessors.empty() || !Parent)
return this;
assert(Parent->getEntry() == this &&
"Block w/o predecessors not the entry of its parent.");
return Parent->getEnclosingBlockWithPredecessors();
}
void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
SmallVector<VPBlockBase *, 8> Blocks;
for (VPBlockBase *Block : depth_first(Entry))
Blocks.push_back(Block);
for (VPBlockBase *Block : Blocks)
delete Block;
}
BasicBlock *
VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
// BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
// Pred stands for Predessor. Prev stands for Previous - last visited/created.
BasicBlock *PrevBB = CFG.PrevBB;
BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
PrevBB->getParent(), CFG.LastBB);
DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
// Hook up the new basic block to its predecessors.
for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
auto &PredVPSuccessors = PredVPBB->getSuccessors();
BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
assert(PredBB && "Predecessor basic-block not found building successor.");
auto *PredBBTerminator = PredBB->getTerminator();
DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
if (isa<UnreachableInst>(PredBBTerminator)) {
assert(PredVPSuccessors.size() == 1 &&
"Predecessor ending w/o branch must have single successor.");
PredBBTerminator->eraseFromParent();
BranchInst::Create(NewBB, PredBB);
} else {
assert(PredVPSuccessors.size() == 2 &&
"Predecessor ending with branch must have two successors.");
unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
assert(!PredBBTerminator->getSuccessor(idx) &&
"Trying to reset an existing successor block.");
PredBBTerminator->setSuccessor(idx, NewBB);
}
}
return NewBB;
}
void VPBasicBlock::execute(VPTransformState *State) {
bool Replica = State->Instance &&
!(State->Instance->Part == 0 && State->Instance->Lane == 0);
VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
VPBlockBase *SingleHPred = nullptr;
BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
// 1. Create an IR basic block, or reuse the last one if possible.
// The last IR basic block is reused, as an optimization, in three cases:
// A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
// B. when the current VPBB has a single (hierarchical) predecessor which
// is PrevVPBB and the latter has a single (hierarchical) successor; and
// C. when the current VPBB is an entry of a region replica - where PrevVPBB
// is the exit of this region from a previous instance, or the predecessor
// of this region.
if (PrevVPBB && /* A */
!((SingleHPred = getSingleHierarchicalPredecessor()) &&
SingleHPred->getExitBasicBlock() == PrevVPBB &&
PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
!(Replica && getPredecessors().empty())) { /* C */
NewBB = createEmptyBasicBlock(State->CFG);
State->Builder.SetInsertPoint(NewBB);
// Temporarily terminate with unreachable until CFG is rewired.
UnreachableInst *Terminator = State->Builder.CreateUnreachable();
State->Builder.SetInsertPoint(Terminator);
// Register NewBB in its loop. In innermost loops its the same for all BB's.
Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
L->addBasicBlockToLoop(NewBB, *State->LI);
State->CFG.PrevBB = NewBB;
}
// 2. Fill the IR basic block with IR instructions.
DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
<< " in BB:" << NewBB->getName() << '\n');
State->CFG.VPBB2IRBB[this] = NewBB;
State->CFG.PrevVPBB = this;
for (VPRecipeBase &Recipe : Recipes)
Recipe.execute(*State);
DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
}
void VPRegionBlock::execute(VPTransformState *State) {
ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
if (!isReplicator()) {
// Visit the VPBlocks connected to "this", starting from it.
for (VPBlockBase *Block : RPOT) {
DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
Block->execute(State);
}
return;
}
assert(!State->Instance && "Replicating a Region with non-null instance.");
// Enter replicating mode.
State->Instance = {0, 0};
for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
State->Instance->Part = Part;
for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) {
State->Instance->Lane = Lane;
// Visit the VPBlocks connected to \p this, starting from it.
for (VPBlockBase *Block : RPOT) {
DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
Block->execute(State);
}
}
}
// Exit replicating mode.
State->Instance.reset();
}
/// Generate the code inside the body of the vectorized loop. Assumes a single
/// LoopVectorBody basic-block was created for this. Introduce additional
/// basic-blocks as needed, and fill them all.
void VPlan::execute(VPTransformState *State) {
BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
BasicBlock *VectorLatchBB = VectorHeaderBB;
// 1. Make room to generate basic-blocks inside loop body if needed.
VectorLatchBB = VectorHeaderBB->splitBasicBlock(
VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
Loop *L = State->LI->getLoopFor(VectorHeaderBB);
L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
// Remove the edge between Header and Latch to allow other connections.
// Temporarily terminate with unreachable until CFG is rewired.
// Note: this asserts the generated code's assumption that
// getFirstInsertionPt() can be dereferenced into an Instruction.
VectorHeaderBB->getTerminator()->eraseFromParent();
State->Builder.SetInsertPoint(VectorHeaderBB);
UnreachableInst *Terminator = State->Builder.CreateUnreachable();
State->Builder.SetInsertPoint(Terminator);
// 2. Generate code in loop body.
State->CFG.PrevVPBB = nullptr;
State->CFG.PrevBB = VectorHeaderBB;
State->CFG.LastBB = VectorLatchBB;
for (VPBlockBase *Block : depth_first(Entry))
Block->execute(State);
// 3. Merge the temporary latch created with the last basic-block filled.
BasicBlock *LastBB = State->CFG.PrevBB;
// Connect LastBB to VectorLatchBB to facilitate their merge.
assert(isa<UnreachableInst>(LastBB->getTerminator()) &&
"Expected VPlan CFG to terminate with unreachable");
LastBB->getTerminator()->eraseFromParent();
BranchInst::Create(VectorLatchBB, LastBB);
// Merge LastBB with Latch.
bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
(void)Merged;
assert(Merged && "Could not merge last basic block with latch.");
VectorLatchBB = LastBB;
updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB);
}
void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
BasicBlock *LoopLatchBB) {
BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
DT->addNewBlock(LoopHeaderBB, LoopPreHeaderBB);
// The vector body may be more than a single basic-block by this point.
// Update the dominator tree information inside the vector body by propagating
// it from header to latch, expecting only triangular control-flow, if any.
BasicBlock *PostDomSucc = nullptr;
for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
// Get the list of successors of this block.
std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
assert(Succs.size() <= 2 &&
"Basic block in vector loop has more than 2 successors.");
PostDomSucc = Succs[0];
if (Succs.size() == 1) {
assert(PostDomSucc->getSinglePredecessor() &&
"PostDom successor has more than one predecessor.");
DT->addNewBlock(PostDomSucc, BB);
continue;
}
BasicBlock *InterimSucc = Succs[1];
if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
PostDomSucc = Succs[1];
InterimSucc = Succs[0];
}
assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
"One successor of a basic block does not lead to the other.");
assert(InterimSucc->getSinglePredecessor() &&
"Interim successor has more than one predecessor.");
assert(std::distance(pred_begin(PostDomSucc), pred_end(PostDomSucc)) == 2 &&
"PostDom successor has more than two predecessors.");
DT->addNewBlock(InterimSucc, BB);
DT->addNewBlock(PostDomSucc, BB);
}
}
const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
Twine(getOrCreateBID(Block));
}
const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
const std::string &Name = Block->getName();
if (!Name.empty())
return Name;
return "VPB" + Twine(getOrCreateBID(Block));
}
void VPlanPrinter::dump() {
Depth = 1;
bumpIndent(0);
OS << "digraph VPlan {\n";
OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
if (!Plan.getName().empty())
OS << "\\n" << DOT::EscapeString(Plan.getName());
OS << "\"]\n";
OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
OS << "edge [fontname=Courier, fontsize=30]\n";
OS << "compound=true\n";
for (VPBlockBase *Block : depth_first(Plan.getEntry()))
dumpBlock(Block);
OS << "}\n";
}
void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
dumpBasicBlock(BasicBlock);
else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
dumpRegion(Region);
else
llvm_unreachable("Unsupported kind of VPBlock.");
}
void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
bool Hidden, const Twine &Label) {
// Due to "dot" we print an edge between two regions as an edge between the
// exit basic block and the entry basic of the respective regions.
const VPBlockBase *Tail = From->getExitBasicBlock();
const VPBlockBase *Head = To->getEntryBasicBlock();
OS << Indent << getUID(Tail) << " -> " << getUID(Head);
OS << " [ label=\"" << Label << '\"';
if (Tail != From)
OS << " ltail=" << getUID(From);
if (Head != To)
OS << " lhead=" << getUID(To);
if (Hidden)
OS << "; splines=none";
OS << "]\n";
}
void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
auto &Successors = Block->getSuccessors();
if (Successors.size() == 1)
drawEdge(Block, Successors.front(), false, "");
else if (Successors.size() == 2) {
drawEdge(Block, Successors.front(), false, "T");
drawEdge(Block, Successors.back(), false, "F");
} else {
unsigned SuccessorNumber = 0;
for (auto *Successor : Successors)
drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
}
}
void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
OS << Indent << getUID(BasicBlock) << " [label =\n";
bumpIndent(1);
OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
bumpIndent(1);
for (const VPRecipeBase &Recipe : *BasicBlock)
Recipe.print(OS, Indent);
bumpIndent(-2);
OS << "\n" << Indent << "]\n";
dumpEdges(BasicBlock);
}
void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
OS << Indent << "subgraph " << getUID(Region) << " {\n";
bumpIndent(1);
OS << Indent << "fontname=Courier\n"
<< Indent << "label=\""
<< DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
<< DOT::EscapeString(Region->getName()) << "\"\n";
// Dump the blocks of the region.
assert(Region->getEntry() && "Region contains no inner blocks.");
for (const VPBlockBase *Block : depth_first(Region->getEntry()))
dumpBlock(Block);
bumpIndent(-1);
OS << Indent << "}\n";
dumpEdges(Region);
}
void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) {
std::string IngredientString;
raw_string_ostream RSO(IngredientString);
if (auto *Inst = dyn_cast<Instruction>(V)) {
if (!Inst->getType()->isVoidTy()) {
Inst->printAsOperand(RSO, false);
RSO << " = ";
}
RSO << Inst->getOpcodeName() << " ";
unsigned E = Inst->getNumOperands();
if (E > 0) {
Inst->getOperand(0)->printAsOperand(RSO, false);
for (unsigned I = 1; I < E; ++I)
Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
}
} else // !Inst
V->printAsOperand(RSO, false);
RSO.flush();
O << DOT::EscapeString(IngredientString);
}

View File

@ -1,789 +0,0 @@
//===- VPlan.h - Represent A Vectorizer Plan ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file contains the declarations of the Vectorization Plan base classes:
/// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
/// VPBlockBase, together implementing a Hierarchical CFG;
/// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
/// treated as proper graphs for generic algorithms;
/// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
/// within VPBasicBlocks;
/// 4. The VPlan class holding a candidate for vectorization;
/// 5. The VPlanPrinter class providing a way to print a plan in dot format.
/// These are documented in docs/VectorizationPlan.rst.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/Support/raw_ostream.h"
// The (re)use of existing LoopVectorize classes is subject to future VPlan
// refactoring.
namespace {
// Forward declarations.
//class InnerLoopVectorizer;
class LoopVectorizationLegality;
class LoopVectorizationCostModel;
} // namespace
namespace llvm {
// Forward declarations.
class BasicBlock;
class InnerLoopVectorizer;
class VPBasicBlock;
/// In what follows, the term "input IR" refers to code that is fed into the
/// vectorizer whereas the term "output IR" refers to code that is generated by
/// the vectorizer.
/// VPIteration represents a single point in the iteration space of the output
/// (vectorized and/or unrolled) IR loop.
struct VPIteration {
unsigned Part; ///< in [0..UF)
unsigned Lane; ///< in [0..VF)
};
/// This is a helper struct for maintaining vectorization state. It's used for
/// mapping values from the original loop to their corresponding values in
/// the new loop. Two mappings are maintained: one for vectorized values and
/// one for scalarized values. Vectorized values are represented with UF
/// vector values in the new loop, and scalarized values are represented with
/// UF x VF scalar values in the new loop. UF and VF are the unroll and
/// vectorization factors, respectively.
///
/// Entries can be added to either map with setVectorValue and setScalarValue,
/// which assert that an entry was not already added before. If an entry is to
/// replace an existing one, call resetVectorValue and resetScalarValue. This is
/// currently needed to modify the mapped values during "fix-up" operations that
/// occur once the first phase of widening is complete. These operations include
/// type truncation and the second phase of recurrence widening.
///
/// Entries from either map can be retrieved using the getVectorValue and
/// getScalarValue functions, which assert that the desired value exists.
struct VectorizerValueMap {
private:
/// The unroll factor. Each entry in the vector map contains UF vector values.
unsigned UF;
/// The vectorization factor. Each entry in the scalar map contains UF x VF
/// scalar values.
unsigned VF;
/// The vector and scalar map storage. We use std::map and not DenseMap
/// because insertions to DenseMap invalidate its iterators.
typedef SmallVector<Value *, 2> VectorParts;
typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts;
std::map<Value *, VectorParts> VectorMapStorage;
std::map<Value *, ScalarParts> ScalarMapStorage;
public:
/// Construct an empty map with the given unroll and vectorization factors.
VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {}
/// \return True if the map has any vector entry for \p Key.
bool hasAnyVectorValue(Value *Key) const {
return VectorMapStorage.count(Key);
}
/// \return True if the map has a vector entry for \p Key and \p Part.
bool hasVectorValue(Value *Key, unsigned Part) const {
assert(Part < UF && "Queried Vector Part is too large.");
if (!hasAnyVectorValue(Key))
return false;
const VectorParts &Entry = VectorMapStorage.find(Key)->second;
assert(Entry.size() == UF && "VectorParts has wrong dimensions.");
return Entry[Part] != nullptr;
}
/// \return True if the map has any scalar entry for \p Key.
bool hasAnyScalarValue(Value *Key) const {
return ScalarMapStorage.count(Key);
}
/// \return True if the map has a scalar entry for \p Key and \p Instance.
bool hasScalarValue(Value *Key, const VPIteration &Instance) const {
assert(Instance.Part < UF && "Queried Scalar Part is too large.");
assert(Instance.Lane < VF && "Queried Scalar Lane is too large.");
if (!hasAnyScalarValue(Key))
return false;
const ScalarParts &Entry = ScalarMapStorage.find(Key)->second;
assert(Entry.size() == UF && "ScalarParts has wrong dimensions.");
assert(Entry[Instance.Part].size() == VF &&
"ScalarParts has wrong dimensions.");
return Entry[Instance.Part][Instance.Lane] != nullptr;
}
/// Retrieve the existing vector value that corresponds to \p Key and
/// \p Part.
Value *getVectorValue(Value *Key, unsigned Part) {
assert(hasVectorValue(Key, Part) && "Getting non-existent value.");
return VectorMapStorage[Key][Part];
}
/// Retrieve the existing scalar value that corresponds to \p Key and
/// \p Instance.
Value *getScalarValue(Value *Key, const VPIteration &Instance) {
assert(hasScalarValue(Key, Instance) && "Getting non-existent value.");
return ScalarMapStorage[Key][Instance.Part][Instance.Lane];
}
/// Set a vector value associated with \p Key and \p Part. Assumes such a
/// value is not already set. If it is, use resetVectorValue() instead.
void setVectorValue(Value *Key, unsigned Part, Value *Vector) {
assert(!hasVectorValue(Key, Part) && "Vector value already set for part");
if (!VectorMapStorage.count(Key)) {
VectorParts Entry(UF);
VectorMapStorage[Key] = Entry;
}
VectorMapStorage[Key][Part] = Vector;
}
/// Set a scalar value associated with \p Key and \p Instance. Assumes such a
/// value is not already set.
void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) {
assert(!hasScalarValue(Key, Instance) && "Scalar value already set");
if (!ScalarMapStorage.count(Key)) {
ScalarParts Entry(UF);
// TODO: Consider storing uniform values only per-part, as they occupy
// lane 0 only, keeping the other VF-1 redundant entries null.
for (unsigned Part = 0; Part < UF; ++Part)
Entry[Part].resize(VF, nullptr);
ScalarMapStorage[Key] = Entry;
}
ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
}
/// Reset the vector value associated with \p Key for the given \p Part.
/// This function can be used to update values that have already been
/// vectorized. This is the case for "fix-up" operations including type
/// truncation and the second phase of recurrence vectorization.
void resetVectorValue(Value *Key, unsigned Part, Value *Vector) {
assert(hasVectorValue(Key, Part) && "Vector value not set for part");
VectorMapStorage[Key][Part] = Vector;
}
/// Reset the scalar value associated with \p Key for \p Part and \p Lane.
/// This function can be used to update values that have already been
/// scalarized. This is the case for "fix-up" operations including scalar phi
/// nodes for scalarized and predicated instructions.
void resetScalarValue(Value *Key, const VPIteration &Instance,
Value *Scalar) {
assert(hasScalarValue(Key, Instance) &&
"Scalar value not set for part and lane");
ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
}
};
/// VPTransformState holds information passed down when "executing" a VPlan,
/// needed for generating the output IR.
struct VPTransformState {
VPTransformState(unsigned VF, unsigned UF, class LoopInfo *LI,
class DominatorTree *DT, IRBuilder<> &Builder,
VectorizerValueMap &ValueMap, InnerLoopVectorizer *ILV)
: VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder),
ValueMap(ValueMap), ILV(ILV) {}
/// The chosen Vectorization and Unroll Factors of the loop being vectorized.
unsigned VF;
unsigned UF;
/// Hold the indices to generate specific scalar instructions. Null indicates
/// that all instances are to be generated, using either scalar or vector
/// instructions.
Optional<VPIteration> Instance;
/// Hold state information used when constructing the CFG of the output IR,
/// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
struct CFGState {
/// The previous VPBasicBlock visited. Initially set to null.
VPBasicBlock *PrevVPBB;
/// The previous IR BasicBlock created or used. Initially set to the new
/// header BasicBlock.
BasicBlock *PrevBB;
/// The last IR BasicBlock in the output IR. Set to the new latch
/// BasicBlock, used for placing the newly created BasicBlocks.
BasicBlock *LastBB;
/// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
/// of replication, maps the BasicBlock of the last replica created.
SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
CFGState() : PrevVPBB(nullptr), PrevBB(nullptr), LastBB(nullptr) {}
} CFG;
/// Hold a pointer to LoopInfo to register new basic blocks in the loop.
class LoopInfo *LI;
/// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
class DominatorTree *DT;
/// Hold a reference to the IRBuilder used to generate output IR code.
IRBuilder<> &Builder;
/// Hold a reference to the Value state information used when generating the
/// Values of the output IR.
VectorizerValueMap &ValueMap;
/// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
class InnerLoopVectorizer *ILV;
};
/// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
/// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
class VPBlockBase {
private:
const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
/// An optional name for the block.
std::string Name;
/// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
/// it is a topmost VPBlockBase.
class VPRegionBlock *Parent;
/// List of predecessor blocks.
SmallVector<VPBlockBase *, 1> Predecessors;
/// List of successor blocks.
SmallVector<VPBlockBase *, 1> Successors;
/// Add \p Successor as the last successor to this block.
void appendSuccessor(VPBlockBase *Successor) {
assert(Successor && "Cannot add nullptr successor!");
Successors.push_back(Successor);
}
/// Add \p Predecessor as the last predecessor to this block.
void appendPredecessor(VPBlockBase *Predecessor) {
assert(Predecessor && "Cannot add nullptr predecessor!");
Predecessors.push_back(Predecessor);
}
/// Remove \p Predecessor from the predecessors of this block.
void removePredecessor(VPBlockBase *Predecessor) {
auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor);
assert(Pos && "Predecessor does not exist");
Predecessors.erase(Pos);
}
/// Remove \p Successor from the successors of this block.
void removeSuccessor(VPBlockBase *Successor) {
auto Pos = std::find(Successors.begin(), Successors.end(), Successor);
assert(Pos && "Successor does not exist");
Successors.erase(Pos);
}
protected:
VPBlockBase(const unsigned char SC, const std::string &N)
: SubclassID(SC), Name(N), Parent(nullptr) {}
public:
/// An enumeration for keeping track of the concrete subclass of VPBlockBase
/// that are actually instantiated. Values of this enumeration are kept in the
/// SubclassID field of the VPBlockBase objects. They are used for concrete
/// type identification.
typedef enum { VPBasicBlockSC, VPRegionBlockSC } VPBlockTy;
typedef SmallVectorImpl<VPBlockBase *> VPBlocksTy;
virtual ~VPBlockBase() {}
const std::string &getName() const { return Name; }
void setName(const Twine &newName) { Name = newName.str(); }
/// \return an ID for the concrete type of this object.
/// This is used to implement the classof checks. This should not be used
/// for any other purpose, as the values may change as LLVM evolves.
unsigned getVPBlockID() const { return SubclassID; }
const VPRegionBlock *getParent() const { return Parent; }
void setParent(VPRegionBlock *P) { Parent = P; }
/// \return the VPBasicBlock that is the entry of this VPBlockBase,
/// recursively, if the latter is a VPRegionBlock. Otherwise, if this
/// VPBlockBase is a VPBasicBlock, it is returned.
const VPBasicBlock *getEntryBasicBlock() const;
VPBasicBlock *getEntryBasicBlock();
/// \return the VPBasicBlock that is the exit of this VPBlockBase,
/// recursively, if the latter is a VPRegionBlock. Otherwise, if this
/// VPBlockBase is a VPBasicBlock, it is returned.
const VPBasicBlock *getExitBasicBlock() const;
VPBasicBlock *getExitBasicBlock();
const VPBlocksTy &getSuccessors() const { return Successors; }
VPBlocksTy &getSuccessors() { return Successors; }
const VPBlocksTy &getPredecessors() const { return Predecessors; }
VPBlocksTy &getPredecessors() { return Predecessors; }
/// \return the successor of this VPBlockBase if it has a single successor.
/// Otherwise return a null pointer.
VPBlockBase *getSingleSuccessor() const {
return (Successors.size() == 1 ? *Successors.begin() : nullptr);
}
/// \return the predecessor of this VPBlockBase if it has a single
/// predecessor. Otherwise return a null pointer.
VPBlockBase *getSinglePredecessor() const {
return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
}
/// An Enclosing Block of a block B is any block containing B, including B
/// itself. \return the closest enclosing block starting from "this", which
/// has successors. \return the root enclosing block if all enclosing blocks
/// have no successors.
VPBlockBase *getEnclosingBlockWithSuccessors();
/// \return the closest enclosing block starting from "this", which has
/// predecessors. \return the root enclosing block if all enclosing blocks
/// have no predecessors.
VPBlockBase *getEnclosingBlockWithPredecessors();
/// \return the successors either attached directly to this VPBlockBase or, if
/// this VPBlockBase is the exit block of a VPRegionBlock and has no
/// successors of its own, search recursively for the first enclosing
/// VPRegionBlock that has successors and return them. If no such
/// VPRegionBlock exists, return the (empty) successors of the topmost
/// VPBlockBase reached.
const VPBlocksTy &getHierarchicalSuccessors() {
return getEnclosingBlockWithSuccessors()->getSuccessors();
}
/// \return the hierarchical successor of this VPBlockBase if it has a single
/// hierarchical successor. Otherwise return a null pointer.
VPBlockBase *getSingleHierarchicalSuccessor() {
return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
}
/// \return the predecessors either attached directly to this VPBlockBase or,
/// if this VPBlockBase is the entry block of a VPRegionBlock and has no
/// predecessors of its own, search recursively for the first enclosing
/// VPRegionBlock that has predecessors and return them. If no such
/// VPRegionBlock exists, return the (empty) predecessors of the topmost
/// VPBlockBase reached.
const VPBlocksTy &getHierarchicalPredecessors() {
return getEnclosingBlockWithPredecessors()->getPredecessors();
}
/// \return the hierarchical predecessor of this VPBlockBase if it has a
/// single hierarchical predecessor. Otherwise return a null pointer.
VPBlockBase *getSingleHierarchicalPredecessor() {
return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
}
/// Sets a given VPBlockBase \p Successor as the single successor and \return
/// \p Successor. The parent of this Block is copied to be the parent of
/// \p Successor.
VPBlockBase *setOneSuccessor(VPBlockBase *Successor) {
assert(Successors.empty() && "Setting one successor when others exist.");
appendSuccessor(Successor);
Successor->appendPredecessor(this);
Successor->Parent = Parent;
return Successor;
}
/// Sets two given VPBlockBases \p IfTrue and \p IfFalse to be the two
/// successors. The parent of this Block is copied to be the parent of both
/// \p IfTrue and \p IfFalse.
void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse) {
assert(Successors.empty() && "Setting two successors when others exist.");
appendSuccessor(IfTrue);
appendSuccessor(IfFalse);
IfTrue->appendPredecessor(this);
IfFalse->appendPredecessor(this);
IfTrue->Parent = Parent;
IfFalse->Parent = Parent;
}
void disconnectSuccessor(VPBlockBase *Successor) {
assert(Successor && "Successor to disconnect is null.");
removeSuccessor(Successor);
Successor->removePredecessor(this);
}
/// The method which generates the output IR that correspond to this
/// VPBlockBase, thereby "executing" the VPlan.
virtual void execute(struct VPTransformState *State) = 0;
/// Delete all blocks reachable from a given VPBlockBase, inclusive.
static void deleteCFG(VPBlockBase *Entry);
};
/// VPRecipeBase is a base class modeling a sequence of one or more output IR
/// instructions.
class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> {
friend VPBasicBlock;
private:
const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
/// Each VPRecipe belongs to a single VPBasicBlock.
VPBasicBlock *Parent;
public:
/// An enumeration for keeping track of the concrete subclass of VPRecipeBase
/// that is actually instantiated. Values of this enumeration are kept in the
/// SubclassID field of the VPRecipeBase objects. They are used for concrete
/// type identification.
typedef enum {
VPBranchOnMaskSC,
VPInterleaveSC,
VPPredInstPHISC,
VPReplicateSC,
VPWidenIntOrFpInductionSC,
VPWidenPHISC,
VPWidenSC,
} VPRecipeTy;
VPRecipeBase(const unsigned char SC) : SubclassID(SC), Parent(nullptr) {}
virtual ~VPRecipeBase() {}
/// \return an ID for the concrete type of this object.
/// This is used to implement the classof checks. This should not be used
/// for any other purpose, as the values may change as LLVM evolves.
unsigned getVPRecipeID() const { return SubclassID; }
/// \return the VPBasicBlock which this VPRecipe belongs to.
VPBasicBlock *getParent() { return Parent; }
const VPBasicBlock *getParent() const { return Parent; }
/// The method which generates the output IR instructions that correspond to
/// this VPRecipe, thereby "executing" the VPlan.
virtual void execute(struct VPTransformState &State) = 0;
/// Each recipe prints itself.
virtual void print(raw_ostream &O, const Twine &Indent) const = 0;
};
/// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
/// holds a sequence of zero or more VPRecipe's each representing a sequence of
/// output IR instructions.
class VPBasicBlock : public VPBlockBase {
public:
typedef iplist<VPRecipeBase> RecipeListTy;
private:
/// The VPRecipes held in the order of output instructions to generate.
RecipeListTy Recipes;
public:
/// Instruction iterators...
typedef RecipeListTy::iterator iterator;
typedef RecipeListTy::const_iterator const_iterator;
typedef RecipeListTy::reverse_iterator reverse_iterator;
typedef RecipeListTy::const_reverse_iterator const_reverse_iterator;
//===--------------------------------------------------------------------===//
/// Recipe iterator methods
///
inline iterator begin() { return Recipes.begin(); }
inline const_iterator begin() const { return Recipes.begin(); }
inline iterator end() { return Recipes.end(); }
inline const_iterator end() const { return Recipes.end(); }
inline reverse_iterator rbegin() { return Recipes.rbegin(); }
inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
inline reverse_iterator rend() { return Recipes.rend(); }
inline const_reverse_iterator rend() const { return Recipes.rend(); }
inline size_t size() const { return Recipes.size(); }
inline bool empty() const { return Recipes.empty(); }
inline const VPRecipeBase &front() const { return Recipes.front(); }
inline VPRecipeBase &front() { return Recipes.front(); }
inline const VPRecipeBase &back() const { return Recipes.back(); }
inline VPRecipeBase &back() { return Recipes.back(); }
/// \brief Returns a pointer to a member of the recipe list.
static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
return &VPBasicBlock::Recipes;
}
VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
: VPBlockBase(VPBasicBlockSC, Name.str()) {
if (Recipe)
appendRecipe(Recipe);
}
~VPBasicBlock() { Recipes.clear(); }
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPBlockBase *V) {
return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
}
/// Augment the existing recipes of a VPBasicBlock with an additional
/// \p Recipe as the last recipe.
void appendRecipe(VPRecipeBase *Recipe) {
assert(Recipe && "No recipe to append.");
assert(!Recipe->Parent && "Recipe already in VPlan");
Recipe->Parent = this;
return Recipes.push_back(Recipe);
}
/// The method which generates the output IR instructions that correspond to
/// this VPBasicBlock, thereby "executing" the VPlan.
void execute(struct VPTransformState *State) override;
private:
/// Create an IR BasicBlock to hold the output instructions generated by this
/// VPBasicBlock, and return it. Update the CFGState accordingly.
BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
};
/// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
/// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
/// A VPRegionBlock may indicate that its contents are to be replicated several
/// times. This is designed to support predicated scalarization, in which a
/// scalar if-then code structure needs to be generated VF * UF times. Having
/// this replication indicator helps to keep a single model for multiple
/// candidate VF's. The actual replication takes place only once the desired VF
/// and UF have been determined.
class VPRegionBlock : public VPBlockBase {
private:
/// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
VPBlockBase *Entry;
/// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
VPBlockBase *Exit;
/// An indicator whether this region is to generate multiple replicated
/// instances of output IR corresponding to its VPBlockBases.
bool IsReplicator;
public:
VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit,
const std::string &Name = "", bool IsReplicator = false)
: VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
IsReplicator(IsReplicator) {
assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
assert(Exit->getSuccessors().empty() && "Exit block has successors.");
Entry->setParent(this);
Exit->setParent(this);
}
~VPRegionBlock() {
if (Entry)
deleteCFG(Entry);
}
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPBlockBase *V) {
return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
}
const VPBlockBase *getEntry() const { return Entry; }
VPBlockBase *getEntry() { return Entry; }
const VPBlockBase *getExit() const { return Exit; }
VPBlockBase *getExit() { return Exit; }
/// An indicator whether this region is to generate multiple replicated
/// instances of output IR corresponding to its VPBlockBases.
bool isReplicator() const { return IsReplicator; }
/// The method which generates the output IR instructions that correspond to
/// this VPRegionBlock, thereby "executing" the VPlan.
void execute(struct VPTransformState *State) override;
};
/// VPlan models a candidate for vectorization, encoding various decisions take
/// to produce efficient output IR, including which branches, basic-blocks and
/// output IR instructions to generate, and their cost. VPlan holds a
/// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
/// VPBlock.
class VPlan {
private:
/// Hold the single entry to the Hierarchical CFG of the VPlan.
VPBlockBase *Entry;
/// Holds the VFs applicable to this VPlan.
SmallSet<unsigned, 2> VFs;
/// Holds the name of the VPlan, for printing.
std::string Name;
public:
VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {}
~VPlan() {
if (Entry)
VPBlockBase::deleteCFG(Entry);
}
/// Generate the IR code for this VPlan.
void execute(struct VPTransformState *State);
VPBlockBase *getEntry() { return Entry; }
const VPBlockBase *getEntry() const { return Entry; }
VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; }
void addVF(unsigned VF) { VFs.insert(VF); }
bool hasVF(unsigned VF) { return VFs.count(VF); }
const std::string &getName() const { return Name; }
void setName(const Twine &newName) { Name = newName.str(); }
private:
/// Add to the given dominator tree the header block and every new basic block
/// that was created between it and the latch block, inclusive.
static void updateDominatorTree(class DominatorTree *DT,
BasicBlock *LoopPreHeaderBB,
BasicBlock *LoopLatchBB);
};
/// VPlanPrinter prints a given VPlan to a given output stream. The printing is
/// indented and follows the dot format.
class VPlanPrinter {
friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan);
friend inline raw_ostream &operator<<(raw_ostream &OS,
const struct VPlanIngredient &I);
private:
raw_ostream &OS;
VPlan &Plan;
unsigned Depth;
unsigned TabWidth = 2;
std::string Indent;
unsigned BID = 0;
SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
/// Handle indentation.
void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
/// Print a given \p Block of the Plan.
void dumpBlock(const VPBlockBase *Block);
/// Print the information related to the CFG edges going out of a given
/// \p Block, followed by printing the successor blocks themselves.
void dumpEdges(const VPBlockBase *Block);
/// Print a given \p BasicBlock, including its VPRecipes, followed by printing
/// its successor blocks.
void dumpBasicBlock(const VPBasicBlock *BasicBlock);
/// Print a given \p Region of the Plan.
void dumpRegion(const VPRegionBlock *Region);
unsigned getOrCreateBID(const VPBlockBase *Block) {
return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
}
const Twine getOrCreateName(const VPBlockBase *Block);
const Twine getUID(const VPBlockBase *Block);
/// Print the information related to a CFG edge between two VPBlockBases.
void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
const Twine &Label);
VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {}
void dump();
static void printAsIngredient(raw_ostream &O, Value *V);
};
struct VPlanIngredient {
Value *V;
VPlanIngredient(Value *V) : V(V) {}
};
inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
VPlanPrinter::printAsIngredient(OS, I.V);
return OS;
}
inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) {
VPlanPrinter Printer(OS, Plan);
Printer.dump();
return OS;
}
//===--------------------------------------------------------------------===//
// GraphTraits specializations for VPlan/VPRegionBlock Control-Flow Graphs //
//===--------------------------------------------------------------------===//
// Provide specializations of GraphTraits to be able to treat a VPBlockBase as a
// graph of VPBlockBase nodes...
template <> struct GraphTraits<VPBlockBase *> {
typedef VPBlockBase *NodeRef;
typedef SmallVectorImpl<VPBlockBase *>::iterator ChildIteratorType;
static NodeRef getEntryNode(NodeRef N) { return N; }
static inline ChildIteratorType child_begin(NodeRef N) {
return N->getSuccessors().begin();
}
static inline ChildIteratorType child_end(NodeRef N) {
return N->getSuccessors().end();
}
};
template <> struct GraphTraits<const VPBlockBase *> {
typedef const VPBlockBase *NodeRef;
typedef SmallVectorImpl<VPBlockBase *>::const_iterator ChildIteratorType;
static NodeRef getEntryNode(NodeRef N) { return N; }
static inline ChildIteratorType child_begin(NodeRef N) {
return N->getSuccessors().begin();
}
static inline ChildIteratorType child_end(NodeRef N) {
return N->getSuccessors().end();
}
};
// Provide specializations of GraphTraits to be able to treat a VPBlockBase as a
// graph of VPBlockBase nodes... and to walk it in inverse order. Inverse order
// for a VPBlockBase is considered to be when traversing the predecessors of a
// VPBlockBase instead of its successors.
//
template <> struct GraphTraits<Inverse<VPBlockBase *>> {
typedef VPBlockBase *NodeRef;
typedef SmallVectorImpl<VPBlockBase *>::iterator ChildIteratorType;
static Inverse<VPBlockBase *> getEntryNode(Inverse<VPBlockBase *> B) {
return B;
}
static inline ChildIteratorType child_begin(NodeRef N) {
return N->getPredecessors().begin();
}
static inline ChildIteratorType child_end(NodeRef N) {
return N->getPredecessors().end();
}
};
} // namespace llvm
#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H

View File

@ -26,9 +26,9 @@ target triple = "aarch64--linux-gnu"
; CHECK-NEXT: br i1 [[TMP3]], label %[[PRED_UDIV_IF:.*]], label %[[PRED_UDIV_CONTINUE:.*]]
; CHECK: [[PRED_UDIV_IF]]:
; CHECK-NEXT: [[TMP4:%.*]] = extractelement <2 x i64> [[WIDE_LOAD]], i32 0
; CHECK-NEXT: [[TMP5:%.*]] = add nsw i64 [[TMP4]], %x
; CHECK-NEXT: [[TMP6:%.*]] = extractelement <2 x i64> [[WIDE_LOAD]], i32 0
; CHECK-NEXT: [[TMP7:%.*]] = udiv i64 [[TMP6]], [[TMP5]]
; CHECK-NEXT: [[TMP5:%.*]] = extractelement <2 x i64> [[WIDE_LOAD]], i32 0
; CHECK-NEXT: [[TMP6:%.*]] = add nsw i64 [[TMP5]], %x
; CHECK-NEXT: [[TMP7:%.*]] = udiv i64 [[TMP4]], [[TMP6]]
; CHECK-NEXT: [[TMP8:%.*]] = insertelement <2 x i64> undef, i64 [[TMP7]], i32 0
; CHECK-NEXT: br label %[[PRED_UDIV_CONTINUE]]
; CHECK: [[PRED_UDIV_CONTINUE]]:
@ -37,9 +37,9 @@ target triple = "aarch64--linux-gnu"
; CHECK-NEXT: br i1 [[TMP10]], label %[[PRED_UDIV_IF1:.*]], label %[[PRED_UDIV_CONTINUE2]]
; CHECK: [[PRED_UDIV_IF1]]:
; CHECK-NEXT: [[TMP11:%.*]] = extractelement <2 x i64> [[WIDE_LOAD]], i32 1
; CHECK-NEXT: [[TMP12:%.*]] = add nsw i64 [[TMP11]], %x
; CHECK-NEXT: [[TMP13:%.*]] = extractelement <2 x i64> [[WIDE_LOAD]], i32 1
; CHECK-NEXT: [[TMP14:%.*]] = udiv i64 [[TMP13]], [[TMP12]]
; CHECK-NEXT: [[TMP12:%.*]] = extractelement <2 x i64> [[WIDE_LOAD]], i32 1
; CHECK-NEXT: [[TMP13:%.*]] = add nsw i64 [[TMP12]], %x
; CHECK-NEXT: [[TMP14:%.*]] = udiv i64 [[TMP11]], [[TMP13]]
; CHECK-NEXT: [[TMP15:%.*]] = insertelement <2 x i64> [[TMP9]], i64 [[TMP14]], i32 1
; CHECK-NEXT: br label %[[PRED_UDIV_CONTINUE2]]
; CHECK: [[PRED_UDIV_CONTINUE2]]:

View File

@ -18,8 +18,8 @@ target triple = "aarch64--linux-gnu"
; Cost of udiv:
; (udiv(2) + extractelement(6) + insertelement(3)) / 2 = 5
;
; CHECK: Scalarizing and predicating: %tmp4 = udiv i32 %tmp2, %tmp3
; CHECK: Found an estimated cost of 5 for VF 2 For instruction: %tmp4 = udiv i32 %tmp2, %tmp3
; CHECK: Scalarizing and predicating: %tmp4 = udiv i32 %tmp2, %tmp3
;
define i32 @predicated_udiv(i32* %a, i32* %b, i1 %c, i64 %n) {
entry:
@ -59,8 +59,8 @@ for.end:
; Cost of store:
; (store(4) + extractelement(3)) / 2 = 3
;
; CHECK: Scalarizing and predicating: store i32 %tmp2, i32* %tmp0, align 4
; CHECK: Found an estimated cost of 3 for VF 2 For instruction: store i32 %tmp2, i32* %tmp0, align 4
; CHECK: Scalarizing and predicating: store i32 %tmp2, i32* %tmp0, align 4
;
define void @predicated_store(i32* %a, i1 %c, i32 %x, i64 %n) {
entry:
@ -98,10 +98,10 @@ for.end:
; Cost of udiv:
; (udiv(2) + extractelement(3) + insertelement(3)) / 2 = 4
;
; CHECK: Scalarizing: %tmp3 = add nsw i32 %tmp2, %x
; CHECK: Scalarizing and predicating: %tmp4 = udiv i32 %tmp2, %tmp3
; CHECK: Found an estimated cost of 2 for VF 2 For instruction: %tmp3 = add nsw i32 %tmp2, %x
; CHECK: Found an estimated cost of 4 for VF 2 For instruction: %tmp4 = udiv i32 %tmp2, %tmp3
; CHECK: Scalarizing: %tmp3 = add nsw i32 %tmp2, %x
; CHECK: Scalarizing and predicating: %tmp4 = udiv i32 %tmp2, %tmp3
;
define i32 @predicated_udiv_scalarized_operand(i32* %a, i1 %c, i32 %x, i64 %n) {
entry:
@ -143,10 +143,10 @@ for.end:
; Cost of store:
; store(4) / 2 = 2
;
; CHECK: Scalarizing: %tmp2 = add nsw i32 %tmp1, %x
; CHECK: Scalarizing and predicating: store i32 %tmp2, i32* %tmp0, align 4
; CHECK: Found an estimated cost of 2 for VF 2 For instruction: %tmp2 = add nsw i32 %tmp1, %x
; CHECK: Found an estimated cost of 2 for VF 2 For instruction: store i32 %tmp2, i32* %tmp0, align 4
; CHECK: Scalarizing: %tmp2 = add nsw i32 %tmp1, %x
; CHECK: Scalarizing and predicating: store i32 %tmp2, i32* %tmp0, align 4
;
define void @predicated_store_scalarized_operand(i32* %a, i1 %c, i32 %x, i64 %n) {
entry:
@ -192,16 +192,16 @@ for.end:
; Cost of store:
; store(4) / 2 = 2
;
; CHECK-NOT: Scalarizing: %tmp2 = add i32 %tmp1, %x
; CHECK: Scalarizing and predicating: %tmp3 = sdiv i32 %tmp1, %tmp2
; CHECK: Scalarizing and predicating: %tmp4 = udiv i32 %tmp3, %tmp2
; CHECK: Scalarizing: %tmp5 = sub i32 %tmp4, %x
; CHECK: Scalarizing and predicating: store i32 %tmp5, i32* %tmp0, align 4
; CHECK: Found an estimated cost of 1 for VF 2 For instruction: %tmp2 = add i32 %tmp1, %x
; CHECK: Found an estimated cost of 5 for VF 2 For instruction: %tmp3 = sdiv i32 %tmp1, %tmp2
; CHECK: Found an estimated cost of 5 for VF 2 For instruction: %tmp4 = udiv i32 %tmp3, %tmp2
; CHECK: Found an estimated cost of 2 for VF 2 For instruction: %tmp5 = sub i32 %tmp4, %x
; CHECK: Found an estimated cost of 2 for VF 2 For instruction: store i32 %tmp5, i32* %tmp0, align 4
; CHECK-NOT: Scalarizing: %tmp2 = add i32 %tmp1, %x
; CHECK: Scalarizing and predicating: %tmp3 = sdiv i32 %tmp1, %tmp2
; CHECK: Scalarizing and predicating: %tmp4 = udiv i32 %tmp3, %tmp2
; CHECK: Scalarizing: %tmp5 = sub i32 %tmp4, %x
; CHECK: Scalarizing and predicating: store i32 %tmp5, i32* %tmp0, align 4
;
define void @predication_multi_context(i32* %a, i1 %c, i32 %x, i64 %n) {
entry:

View File

@ -24,10 +24,10 @@ for.body:
for.end:
ret void
; CHECK: LV: Scalarizing: %tmp1 = load i32, i32* %tmp0, align 4
; CHECK: LV: Scalarizing: store i32 %tmp2, i32* %tmp0, align 4
; CHECK: LV: Found an estimated cost of 4 for VF 4 For instruction: %tmp1 = load i32, i32* %tmp0, align 4
; CHECK: LV: Found an estimated cost of 4 for VF 4 For instruction: store i32 %tmp2, i32* %tmp0, align 4
; CHECK: LV: Scalarizing: %tmp1 = load i32, i32* %tmp0, align 4
; CHECK: LV: Scalarizing: store i32 %tmp2, i32* %tmp0, align 4
}

View File

@ -467,6 +467,13 @@ for.body:
; SINK-AFTER: %[[VCONV:.+]] = sext <4 x i16> %[[VSHUF]] to <4 x i32>
; SINK-AFTER: %[[VCONV3:.+]] = sext <4 x i16> %wide.load to <4 x i32>
; SINK-AFTER: mul nsw <4 x i32> %[[VCONV3]], %[[VCONV]]
; Check also that the sext sank after the load in the scalar loop.
; SINK-AFTER: for.body
; SINK-AFTER: %scalar.recur = phi i16 [ %scalar.recur.init, %scalar.ph ], [ %[[LOAD:.+]], %for.body ]
; SINK-AFTER: %[[LOAD]] = load i16, i16* %arrayidx2
; SINK-AFTER: %[[CONV:.+]] = sext i16 %scalar.recur to i32
; SINK-AFTER: %[[CONV3:.+]] = sext i16 %[[LOAD]] to i32
; SINK-AFTER: %mul = mul nsw i32 %[[CONV3]], %[[CONV]]
;
define void @sink_after(i16* %a, i32* %b, i64 %n) {
entry:

View File

@ -209,9 +209,9 @@ entry:
; CHECK: br i1 {{.*}}, label %[[IF0:.+]], label %[[CONT0:.+]]
; CHECK: [[IF0]]:
; CHECK: %[[T00:.+]] = extractelement <2 x i32> %wide.load, i32 0
; CHECK: %[[T01:.+]] = add nsw i32 %[[T00]], %x
; CHECK: %[[T02:.+]] = extractelement <2 x i32> %wide.load, i32 0
; CHECK: %[[T03:.+]] = udiv i32 %[[T02]], %[[T01]]
; CHECK: %[[T01:.+]] = extractelement <2 x i32> %wide.load, i32 0
; CHECK: %[[T02:.+]] = add nsw i32 %[[T01]], %x
; CHECK: %[[T03:.+]] = udiv i32 %[[T00]], %[[T02]]
; CHECK: %[[T04:.+]] = insertelement <2 x i32> undef, i32 %[[T03]], i32 0
; CHECK: br label %[[CONT0]]
; CHECK: [[CONT0]]:
@ -219,9 +219,9 @@ entry:
; CHECK: br i1 {{.*}}, label %[[IF1:.+]], label %[[CONT1:.+]]
; CHECK: [[IF1]]:
; CHECK: %[[T06:.+]] = extractelement <2 x i32> %wide.load, i32 1
; CHECK: %[[T07:.+]] = add nsw i32 %[[T06]], %x
; CHECK: %[[T08:.+]] = extractelement <2 x i32> %wide.load, i32 1
; CHECK: %[[T09:.+]] = udiv i32 %[[T08]], %[[T07]]
; CHECK: %[[T07:.+]] = extractelement <2 x i32> %wide.load, i32 1
; CHECK: %[[T08:.+]] = add nsw i32 %[[T07]], %x
; CHECK: %[[T09:.+]] = udiv i32 %[[T06]], %[[T08]]
; CHECK: %[[T10:.+]] = insertelement <2 x i32> %[[T05]], i32 %[[T09]], i32 1
; CHECK: br label %[[CONT1]]
; CHECK: [[CONT1]]: