1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 02:52:53 +02:00

Graph builder implementation.

Implement a localised graph builder for indirect control flow
instructions. Main interface is through GraphBuilder::buildFlowGraph,
which will build a flow graph around an indirect CF instruction. Various
modifications to FileVerifier are also made to const-expose some members
needed for machine code analysis done by the graph builder.

Reviewers: vlad.tsyrklevich

Reviewed By: vlad.tsyrklevich

Subscribers: llvm-commits, kcc, pcc

Differential Revision: https://reviews.llvm.org/D38427

llvm-svn: 316372
This commit is contained in:
Mitch Phillips 2017-10-23 20:25:19 +00:00
parent 7df5a27d54
commit f9dbee022d
7 changed files with 986 additions and 7 deletions

View File

@ -4,6 +4,7 @@ set(LLVM_LINK_COMPONENTS
AllTargetsDescs
AllTargetsDisassemblers
AllTargetsInfos
CFIVerify
MC
MCParser
Object
@ -11,8 +12,6 @@ set(LLVM_LINK_COMPONENTS
)
add_llvm_tool(llvm-cfi-verify
llvm-cfi-verify.cpp
lib/FileAnalysis.cpp
)
llvm-cfi-verify.cpp)
add_subdirectory(lib)

View File

@ -1,7 +1,9 @@
add_library(LLVMCFIVerify
STATIC
FileAnalysis.cpp
FileAnalysis.h)
FileAnalysis.h
GraphBuilder.cpp
GraphBuilder.h)
llvm_update_compile_flags(LLVMCFIVerify)
llvm_map_components_to_libnames(libs

View File

@ -10,6 +10,7 @@
#ifndef LLVM_CFI_VERIFY_FILE_ANALYSIS_H
#define LLVM_CFI_VERIFY_FILE_ANALYSIS_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
@ -161,7 +162,7 @@ private:
// Contains a mapping between a specific address, and a list of instructions
// that use this address as a branch target (including call instructions).
std::unordered_map<uint64_t, std::vector<uint64_t>> StaticBranchTargetings;
DenseMap<uint64_t, std::vector<uint64_t>> StaticBranchTargetings;
// A list of addresses of indirect control flow instructions.
std::set<uint64_t> IndirectInstructions;

View File

@ -0,0 +1,291 @@
//===- GraphBuilder.cpp -----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "GraphBuilder.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include <functional>
using Instr = llvm::cfi_verify::FileAnalysis::Instr;
namespace llvm {
namespace cfi_verify {
uint64_t SearchLengthForUndef;
uint64_t SearchLengthForConditionalBranch;
static cl::opt<uint64_t, true> SearchLengthForUndefArg(
"search-length-undef",
cl::desc("Specify the maximum amount of instructions "
"to inspect when searching for an undefined "
"instruction from a conditional branch."),
cl::location(SearchLengthForUndef), cl::init(2));
static cl::opt<uint64_t, true> SearchLengthForConditionalBranchArg(
"search-length-cb",
cl::desc("Specify the maximum amount of instructions "
"to inspect when searching for a conditional "
"branch from an indirect control flow."),
cl::location(SearchLengthForConditionalBranch), cl::init(20));
std::vector<uint64_t> GraphResult::flattenAddress(uint64_t Address) const {
std::vector<uint64_t> Addresses;
auto It = IntermediateNodes.find(Address);
Addresses.push_back(Address);
while (It != IntermediateNodes.end()) {
Addresses.push_back(It->second);
It = IntermediateNodes.find(It->second);
}
return Addresses;
}
GraphResult GraphBuilder::buildFlowGraph(const FileAnalysis &Analysis,
uint64_t Address) {
GraphResult Result;
Result.BaseAddress = Address;
DenseSet<uint64_t> OpenedNodes;
const auto &IndirectInstructions = Analysis.getIndirectInstructions();
if (IndirectInstructions.find(Address) == IndirectInstructions.end())
return Result;
buildFlowGraphImpl(Analysis, OpenedNodes, Result, Address, 0);
return Result;
}
void GraphBuilder::buildFlowsToUndefined(const FileAnalysis &Analysis,
GraphResult &Result,
ConditionalBranchNode &BranchNode,
const Instr &BranchInstrMeta) {
assert(SearchLengthForUndef > 0 &&
"Search length for undefined flow must be greater than zero.");
// Start setting up the next node in the block.
uint64_t NextAddress = 0;
const Instr *NextMetaPtr;
// Find out the next instruction in the block and add it to the new
// node.
if (BranchNode.Target && !BranchNode.Fallthrough) {
// We know the target of the branch, find the fallthrough.
NextMetaPtr = Analysis.getNextInstructionSequential(BranchInstrMeta);
if (!NextMetaPtr) {
errs() << "Failed to get next instruction from "
<< format_hex(BranchNode.Address, 2) << ".\n";
return;
}
NextAddress = NextMetaPtr->VMAddress;
BranchNode.Fallthrough =
NextMetaPtr->VMAddress; // Add the new node to the branch head.
} else if (BranchNode.Fallthrough && !BranchNode.Target) {
// We already know the fallthrough, evaluate the target.
uint64_t Target;
if (!Analysis.getMCInstrAnalysis()->evaluateBranch(
BranchInstrMeta.Instruction, BranchInstrMeta.VMAddress,
BranchInstrMeta.InstructionSize, Target)) {
errs() << "Failed to get branch target for conditional branch at address "
<< format_hex(BranchInstrMeta.VMAddress, 2) << ".\n";
return;
}
// Resolve the meta pointer for the target of this branch.
NextMetaPtr = Analysis.getInstruction(Target);
if (!NextMetaPtr) {
errs() << "Failed to find instruction at address "
<< format_hex(Target, 2) << ".\n";
return;
}
NextAddress = Target;
BranchNode.Target =
NextMetaPtr->VMAddress; // Add the new node to the branch head.
} else {
errs() << "ControlBranchNode supplied to buildFlowsToUndefined should "
"provide Target xor Fallthrough.\n";
return;
}
uint64_t CurrentAddress = NextAddress;
const Instr *CurrentMetaPtr = NextMetaPtr;
// Now the branch head has been set properly, complete the rest of the block.
for (uint64_t i = 1; i < SearchLengthForUndef; ++i) {
// Check to see whether the block should die.
if (Analysis.isCFITrap(*CurrentMetaPtr)) {
BranchNode.CFIProtection = true;
return;
}
// Find the metadata of the next instruction.
NextMetaPtr = Analysis.getDefiniteNextInstruction(*CurrentMetaPtr);
if (!NextMetaPtr)
return;
// Setup the next node.
NextAddress = NextMetaPtr->VMAddress;
// Add this as an intermediate.
Result.IntermediateNodes[CurrentAddress] = NextAddress;
// Move the 'current' pointers to the new tail of the block.
CurrentMetaPtr = NextMetaPtr;
CurrentAddress = NextAddress;
}
// Final check of the last thing we added to the block.
if (Analysis.isCFITrap(*CurrentMetaPtr))
BranchNode.CFIProtection = true;
}
void GraphBuilder::buildFlowGraphImpl(const FileAnalysis &Analysis,
DenseSet<uint64_t> &OpenedNodes,
GraphResult &Result, uint64_t Address,
uint64_t Depth) {
// If we've exceeded the flow length, terminate.
if (Depth >= SearchLengthForConditionalBranch) {
Result.OrphanedNodes.push_back(Address);
return;
}
// Ensure this flow is acyclic.
if (OpenedNodes.count(Address))
Result.OrphanedNodes.push_back(Address);
// If this flow is already explored, stop here.
if (Result.IntermediateNodes.count(Address))
return;
// Get the metadata for the node instruction.
const auto &InstrMetaPtr = Analysis.getInstruction(Address);
if (!InstrMetaPtr) {
errs() << "Failed to build flow graph for instruction at address "
<< format_hex(Address, 2) << ".\n";
Result.OrphanedNodes.push_back(Address);
return;
}
const auto &ChildMeta = *InstrMetaPtr;
OpenedNodes.insert(Address);
std::set<const Instr *> CFCrossRefs =
Analysis.getDirectControlFlowXRefs(ChildMeta);
bool HasValidCrossRef = false;
for (const auto *ParentMetaPtr : CFCrossRefs) {
assert(ParentMetaPtr && "CFCrossRefs returned nullptr.");
const auto &ParentMeta = *ParentMetaPtr;
const auto &ParentDesc =
Analysis.getMCInstrInfo()->get(ParentMeta.Instruction.getOpcode());
if (!ParentDesc.mayAffectControlFlow(ParentMeta.Instruction,
*Analysis.getRegisterInfo())) {
// If this cross reference doesn't affect CF, continue the graph.
buildFlowGraphImpl(Analysis, OpenedNodes, Result, ParentMeta.VMAddress,
Depth + 1);
Result.IntermediateNodes[ParentMeta.VMAddress] = Address;
HasValidCrossRef = true;
continue;
}
// Evaluate the branch target to ascertain whether this XRef is the result
// of a fallthrough or the target of a branch.
uint64_t BranchTarget;
if (!Analysis.getMCInstrAnalysis()->evaluateBranch(
ParentMeta.Instruction, ParentMeta.VMAddress,
ParentMeta.InstructionSize, BranchTarget)) {
errs() << "Failed to evaluate branch target for instruction at address "
<< format_hex(ParentMeta.VMAddress, 2) << ".\n";
Result.IntermediateNodes[ParentMeta.VMAddress] = Address;
Result.OrphanedNodes.push_back(ParentMeta.VMAddress);
continue;
}
// Allow unconditional branches to be part of the upwards traversal.
if (ParentDesc.isUnconditionalBranch()) {
// Ensures that the unconditional branch is actually an XRef to the child.
if (BranchTarget != Address) {
errs() << "Control flow to " << format_hex(Address, 2)
<< ", but target resolution of "
<< format_hex(ParentMeta.VMAddress, 2)
<< " is not this address?\n";
Result.IntermediateNodes[ParentMeta.VMAddress] = Address;
Result.OrphanedNodes.push_back(ParentMeta.VMAddress);
continue;
}
buildFlowGraphImpl(Analysis, OpenedNodes, Result, ParentMeta.VMAddress,
Depth + 1);
Result.IntermediateNodes[ParentMeta.VMAddress] = Address;
HasValidCrossRef = true;
continue;
}
// Ensure that any unknown CFs are caught.
if (!ParentDesc.isConditionalBranch()) {
errs() << "Unknown control flow encountered when building graph at "
<< format_hex(Address, 2) << "\n.";
Result.IntermediateNodes[ParentMeta.VMAddress] = Address;
Result.OrphanedNodes.push_back(ParentMeta.VMAddress);
continue;
}
// Only direct conditional branches should be present at this point. Setup
// a conditional branch node and build flows to the ud2.
ConditionalBranchNode BranchNode;
BranchNode.Address = ParentMeta.VMAddress;
BranchNode.Target = 0;
BranchNode.Fallthrough = 0;
BranchNode.CFIProtection = false;
if (BranchTarget == Address)
BranchNode.Target = Address;
else
BranchNode.Fallthrough = Address;
HasValidCrossRef = true;
buildFlowsToUndefined(Analysis, Result, BranchNode, ParentMeta);
Result.ConditionalBranchNodes.push_back(BranchNode);
}
if (!HasValidCrossRef)
Result.OrphanedNodes.push_back(Address);
OpenedNodes.erase(Address);
}
} // namespace cfi_verify
} // namespace llvm

View File

@ -0,0 +1,133 @@
//===- GraphBuilder.h -------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CFI_VERIFY_GRAPH_BUILDER_H
#define LLVM_CFI_VERIFY_GRAPH_BUILDER_H
#include "FileAnalysis.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include <functional>
#include <set>
#include <string>
#include <unordered_map>
using Instr = llvm::cfi_verify::FileAnalysis::Instr;
namespace llvm {
namespace cfi_verify {
extern uint64_t SearchLengthForUndef;
extern uint64_t SearchLengthForConditionalBranch;
struct ConditionalBranchNode {
uint64_t Address;
uint64_t Target;
uint64_t Fallthrough;
// Does this conditional branch look like it's used for CFI protection? i.e.
// - The exit point of a basic block whos entry point is {target|fallthrough}
// is a CFI trap, and...
// - The exit point of the other basic block is an undirect CF instruction.
bool CFIProtection;
};
// The canonical graph result structure returned by GraphBuilder. The members
// in this structure encapsulate all possible code paths to the instruction
// located at `BaseAddress`.
struct GraphResult {
uint64_t BaseAddress;
// Map between an instruction address, and the address of the next instruction
// that will be executed. This map will contain all keys in the range:
// - [orphaned node, base address)
// - [conditional branch node {target|fallthrough}, base address)
DenseMap<uint64_t, uint64_t> IntermediateNodes;
// A list of orphaned nodes. A node is an 'orphan' if it meets any of the
// following criteria:
// - The length of the path from the base to this node has exceeded
// `SearchLengthForConditionalBranch`.
// - The node has no cross references to it.
// - The path from the base to this node is cyclic.
std::vector<uint64_t> OrphanedNodes;
// A list of top-level conditional branches that exist at the top of any
// non-orphan paths from the base.
std::vector<ConditionalBranchNode> ConditionalBranchNodes;
// Returns an in-order list of the path between the address provided and the
// base. The provided address must be part of this graph, and must not be a
// conditional branch.
std::vector<uint64_t> flattenAddress(uint64_t Address) const;
};
class GraphBuilder {
public:
// Build the control flow graph for a provided control flow node. This method
// will enumerate all branch nodes that can lead to this node, and place them
// into GraphResult::ConditionalBranchNodes. It will also provide any orphaned
// (i.e. the upwards traversal did not make it to a branch node) flows to the
// provided node in GraphResult::OrphanedNodes.
static GraphResult buildFlowGraph(const FileAnalysis &Analysis,
uint64_t Address);
private:
// Implementation function that actually builds the flow graph. Retrieves a
// list of cross references to instruction referenced in `Address`. If any of
// these XRefs are conditional branches, it will build the other potential
// path (fallthrough or target) using `buildFlowsToUndefined`. Otherwise, this
// function will recursively call itself where `Address` in the recursive call
// is now the XRef. If any XRef is an orphan, it is added to
// `Result.OrphanedNodes`. `OpenedNodes` keeps track of the list of nodes
// in the current path and is used for cycle-checking. If the path is found
// to be cyclic, it will be added to `Result.OrphanedNodes`.
static void buildFlowGraphImpl(const FileAnalysis &Analysis,
DenseSet<uint64_t> &OpenedNodes,
GraphResult &Result, uint64_t Address,
uint64_t Depth);
// Utilised by buildFlowGraphImpl to build the tree out from the provided
// conditional branch node to an undefined instruction. The provided
// conditional branch node must have exactly one of its subtrees set, and will
// update the node's CFIProtection field if a deterministic flow can be found
// to an undefined instruction.
static void buildFlowsToUndefined(const FileAnalysis &Analysis,
GraphResult &Result,
ConditionalBranchNode &BranchNode,
const Instr &BranchInstrMeta);
};
} // end namespace cfi_verify
} // end namespace llvm
#endif // LLVM_CFI_VERIFY_GRAPH_BUILDER_H

View File

@ -4,6 +4,7 @@ set(LLVM_LINK_COMPONENTS
AllTargetsDescs
AllTargetsDisassemblers
AllTargetsInfos
CFIVerify
MC
MCParser
Object
@ -13,6 +14,6 @@ set(LLVM_LINK_COMPONENTS
list(FIND LLVM_TARGETS_TO_BUILD "X86" x86_idx)
if (NOT x86_idx LESS 0)
add_llvm_unittest(CFIVerifyTests
FileAnalysis.cpp)
target_link_libraries(CFIVerifyTests LLVMCFIVerify)
FileAnalysis.cpp
GraphBuilder.cpp)
endif()

View File

@ -0,0 +1,552 @@
//===- llvm/unittests/llvm-cfi-verify/GraphBuilder.cpp --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "../tools/llvm-cfi-verify/lib/GraphBuilder.h"
#include "../tools/llvm-cfi-verify/lib/FileAnalysis.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include <cstdlib>
#include <sstream>
using Instr = ::llvm::cfi_verify::FileAnalysis::Instr;
using ::testing::AllOf;
using ::testing::Each;
using ::testing::ElementsAre;
using ::testing::Eq;
using ::testing::Field;
using ::testing::IsEmpty;
using ::testing::Matches;
using ::testing::Pair;
using ::testing::PrintToString;
using ::testing::Property;
using ::testing::SizeIs;
using ::testing::UnorderedElementsAre;
using ::testing::Value;
namespace llvm {
namespace cfi_verify {
// Printing helpers for gtest.
std::string HexStringifyContainer(const std::vector<uint64_t> &C) {
std::stringstream Stream;
if (C.empty()) {
return "{ }";
}
Stream << "{ ";
const auto &LastElemIt = std::end(C) - 1;
for (auto It = std::begin(C); It != LastElemIt; ++It) {
Stream << "0x" << std::hex << *It << ", ";
}
Stream << "0x" << std::hex << *LastElemIt << " }";
return Stream.str();
}
void PrintTo(const ConditionalBranchNode &BranchNode, ::std::ostream *os) {
*os << "ConditionalBranchNode<Address: 0x" << std::hex << BranchNode.Address
<< ", Target: 0x" << BranchNode.Target << ", Fallthrough: 0x"
<< BranchNode.Fallthrough
<< ", CFIProtection: " << BranchNode.CFIProtection << ">";
}
void PrintTo(const GraphResult &Result, ::std::ostream *os) {
*os << "Result BaseAddress: 0x" << std::hex << Result.BaseAddress << "\n";
if (Result.ConditionalBranchNodes.empty())
*os << " (No conditional branch nodes)\n";
for (const auto &Node : Result.ConditionalBranchNodes) {
*os << " ";
PrintTo(Node, os);
*os << "\n Fallthrough Path: " << std::hex
<< HexStringifyContainer(Result.flattenAddress(Node.Fallthrough))
<< "\n";
*os << " Target Path: " << std::hex
<< HexStringifyContainer(Result.flattenAddress(Node.Target)) << "\n";
}
if (Result.OrphanedNodes.empty())
*os << " (No orphaned nodes)";
for (const auto &Orphan : Result.OrphanedNodes) {
*os << " Orphan (0x" << std::hex << Orphan
<< ") Path: " << HexStringifyContainer(Result.flattenAddress(Orphan))
<< "\n";
}
}
namespace {
class ELFx86TestFileAnalysis : public FileAnalysis {
public:
ELFx86TestFileAnalysis()
: FileAnalysis(Triple("x86_64--"), SubtargetFeatures()) {}
// Expose this method publicly for testing.
void parseSectionContents(ArrayRef<uint8_t> SectionBytes,
uint64_t SectionAddress) {
FileAnalysis::parseSectionContents(SectionBytes, SectionAddress);
}
Error initialiseDisassemblyMembers() {
return FileAnalysis::initialiseDisassemblyMembers();
}
};
class BasicGraphBuilderTest : public ::testing::Test {
protected:
virtual void SetUp() {
if (Analysis.initialiseDisassemblyMembers()) {
FAIL() << "Failed to initialise FileAnalysis.";
}
}
ELFx86TestFileAnalysis Analysis;
};
MATCHER_P2(HasPath, Result, Matcher, "has path " + PrintToString(Matcher)) {
const auto &Path = Result.flattenAddress(arg);
*result_listener << "the path is " << PrintToString(Path);
return Matches(Matcher)(Path);
}
TEST_F(BasicGraphBuilderTest, BuildFlowGraphTestSinglePathFallthroughUd2) {
Analysis.parseSectionContents(
{
0x75, 0x02, // 0: jne 4 [+2]
0x0f, 0x0b, // 2: ud2
0xff, 0x10, // 4: callq *(%rax)
},
0xDEADBEEF);
const auto Result = GraphBuilder::buildFlowGraph(Analysis, 0xDEADBEEF + 4);
EXPECT_THAT(Result.OrphanedNodes, IsEmpty());
EXPECT_THAT(Result.ConditionalBranchNodes, SizeIs(1));
EXPECT_THAT(Result.ConditionalBranchNodes,
Each(Field(&ConditionalBranchNode::CFIProtection, Eq(true))));
EXPECT_THAT(
Result.ConditionalBranchNodes,
Contains(AllOf(Field(&ConditionalBranchNode::Address, Eq(0xDEADBEEF)),
Field(&ConditionalBranchNode::Target,
HasPath(Result, ElementsAre(0xDEADBEEF + 4))),
Field(&ConditionalBranchNode::Fallthrough,
HasPath(Result, ElementsAre(0xDEADBEEF + 2))))))
<< PrintToString(Result);
}
TEST_F(BasicGraphBuilderTest, BuildFlowGraphTestSinglePathJumpUd2) {
Analysis.parseSectionContents(
{
0x75, 0x02, // 0: jne 4 [+2]
0xff, 0x10, // 2: callq *(%rax)
0x0f, 0x0b, // 4: ud2
},
0xDEADBEEF);
const auto Result = GraphBuilder::buildFlowGraph(Analysis, 0xDEADBEEF + 2);
EXPECT_THAT(Result.OrphanedNodes, IsEmpty());
EXPECT_THAT(Result.ConditionalBranchNodes, SizeIs(1));
EXPECT_THAT(Result.ConditionalBranchNodes,
Each(Field(&ConditionalBranchNode::CFIProtection, Eq(true))));
EXPECT_THAT(
Result.ConditionalBranchNodes,
Contains(AllOf(Field(&ConditionalBranchNode::Address, Eq(0xDEADBEEF)),
Field(&ConditionalBranchNode::Target,
HasPath(Result, ElementsAre(0xDEADBEEF + 4))),
Field(&ConditionalBranchNode::Fallthrough,
HasPath(Result, ElementsAre(0xDEADBEEF + 2))))))
<< PrintToString(Result);
}
TEST_F(BasicGraphBuilderTest, BuildFlowGraphTestDualPathDualUd2) {
Analysis.parseSectionContents(
{
0x75, 0x03, // 0: jne 5 [+3]
0x90, // 2: nop
0xff, 0x10, // 3: callq *(%rax)
0x0f, 0x0b, // 5: ud2
0x75, 0xf9, // 7: jne 2 [-7]
0x0f, 0x0b, // 9: ud2
},
0xDEADBEEF);
const auto Result = GraphBuilder::buildFlowGraph(Analysis, 0xDEADBEEF + 3);
EXPECT_THAT(Result.OrphanedNodes, IsEmpty());
EXPECT_THAT(Result.ConditionalBranchNodes, SizeIs(2));
EXPECT_THAT(Result.ConditionalBranchNodes,
Each(Field(&ConditionalBranchNode::CFIProtection, Eq(true))));
EXPECT_THAT(
Result.ConditionalBranchNodes,
Contains(AllOf(
Field(&ConditionalBranchNode::Address, Eq(0xDEADBEEF)),
Field(&ConditionalBranchNode::Fallthrough,
HasPath(Result, ElementsAre(0xDEADBEEF + 2, 0xDEADBEEF + 3))),
Field(&ConditionalBranchNode::Target,
HasPath(Result, ElementsAre(0xDEADBEEF + 5))))))
<< PrintToString(Result);
EXPECT_THAT(
Result.ConditionalBranchNodes,
Contains(AllOf(
Field(&ConditionalBranchNode::Address, Eq(0xDEADBEEF + 7)),
Field(&ConditionalBranchNode::Fallthrough,
HasPath(Result, ElementsAre(0xDEADBEEF + 9))),
Field(&ConditionalBranchNode::Target,
HasPath(Result, ElementsAre(0xDEADBEEF + 2, 0xDEADBEEF + 3))))))
<< PrintToString(Result);
}
TEST_F(BasicGraphBuilderTest, BuildFlowGraphTestDualPathSingleUd2) {
Analysis.parseSectionContents(
{
0x75, 0x05, // 0: jne 7 [+5]
0x90, // 2: nop
0xff, 0x10, // 3: callq *(%rax)
0x75, 0xfb, // 5: jne 2 [-5]
0x0f, 0x0b, // 7: ud2
},
0xDEADBEEF);
GraphResult Result = GraphBuilder::buildFlowGraph(Analysis, 0xDEADBEEF + 3);
EXPECT_THAT(Result.OrphanedNodes, IsEmpty());
EXPECT_THAT(Result.ConditionalBranchNodes, SizeIs(2));
EXPECT_THAT(Result.ConditionalBranchNodes,
Each(Field(&ConditionalBranchNode::CFIProtection, Eq(true))));
EXPECT_THAT(
Result.ConditionalBranchNodes,
Contains(AllOf(
Field(&ConditionalBranchNode::Address, Eq(0xDEADBEEF)),
Field(&ConditionalBranchNode::Fallthrough,
HasPath(Result, ElementsAre(0xDEADBEEF + 2, 0xDEADBEEF + 3))),
Field(&ConditionalBranchNode::Target,
HasPath(Result, ElementsAre(0xDEADBEEF + 7))))))
<< PrintToString(Result);
EXPECT_THAT(
Result.ConditionalBranchNodes,
Contains(AllOf(
Field(&ConditionalBranchNode::Address, Eq(0xDEADBEEF + 5)),
Field(&ConditionalBranchNode::Fallthrough,
HasPath(Result, ElementsAre(0xDEADBEEF + 7))),
Field(&ConditionalBranchNode::Target,
HasPath(Result, ElementsAre(0xDEADBEEF + 2, 0xDEADBEEF + 3))))))
<< PrintToString(Result);
}
TEST_F(BasicGraphBuilderTest, BuildFlowGraphFailures) {
Analysis.parseSectionContents(
{
0x90, // 0: nop
0x75, 0xfe, // 1: jne 1 [-2]
},
0xDEADBEEF);
GraphResult Result = GraphBuilder::buildFlowGraph(Analysis, 0xDEADBEEF);
EXPECT_THAT(Result.OrphanedNodes, IsEmpty());
EXPECT_THAT(Result.ConditionalBranchNodes, IsEmpty());
Result = GraphBuilder::buildFlowGraph(Analysis, 0xDEADBEEF + 1);
EXPECT_THAT(Result.OrphanedNodes, IsEmpty());
EXPECT_THAT(Result.ConditionalBranchNodes, IsEmpty());
Result = GraphBuilder::buildFlowGraph(Analysis, 0xDEADC0DE);
EXPECT_THAT(Result.OrphanedNodes, IsEmpty());
EXPECT_THAT(Result.ConditionalBranchNodes, IsEmpty());
}
TEST_F(BasicGraphBuilderTest, BuildFlowGraphNoXrefs) {
Analysis.parseSectionContents(
{
0xeb, 0xfe, // 0: jmp 0 [-2]
0xff, 0x10, // 2: callq *(%rax)
},
0xDEADBEEF);
GraphResult Result = GraphBuilder::buildFlowGraph(Analysis, 0xDEADBEEF + 2);
EXPECT_THAT(Result.ConditionalBranchNodes, IsEmpty());
EXPECT_THAT(Result.OrphanedNodes, ElementsAre(0xDEADBEEF + 2));
EXPECT_THAT(Result.IntermediateNodes, IsEmpty());
}
TEST_F(BasicGraphBuilderTest, BuildFlowGraphConditionalInfiniteLoop) {
Analysis.parseSectionContents(
{
0x75, 0xfe, // 0: jne 0 [-2]
0xff, 0x10, // 2: callq *(%rax)
},
0xDEADBEEF);
GraphResult Result = GraphBuilder::buildFlowGraph(Analysis, 0xDEADBEEF + 2);
EXPECT_THAT(Result.OrphanedNodes, IsEmpty());
EXPECT_THAT(Result.ConditionalBranchNodes, SizeIs(1));
EXPECT_THAT(
Result.ConditionalBranchNodes,
Each(AllOf(Field(&ConditionalBranchNode::CFIProtection, Eq(false)),
Field(&ConditionalBranchNode::Target,
HasPath(Result, ElementsAre(0xDEADBEEF))),
Field(&ConditionalBranchNode::Fallthrough,
HasPath(Result, ElementsAre(0xDEADBEEF + 2))))))
<< PrintToString(Result);
}
TEST_F(BasicGraphBuilderTest, BuildFlowGraphUnconditionalInfiniteLoop) {
Analysis.parseSectionContents(
{
0x75, 0x02, // 0: jne 4 [+2]
0xeb, 0xfc, // 2: jmp 0 [-4]
0xff, 0x10, // 4: callq *(%rax)
},
0xDEADBEEF);
GraphResult Result = GraphBuilder::buildFlowGraph(Analysis, 0xDEADBEEF + 4);
EXPECT_THAT(Result.OrphanedNodes, IsEmpty());
EXPECT_THAT(Result.ConditionalBranchNodes, SizeIs(1));
EXPECT_THAT(
Result.ConditionalBranchNodes,
Contains(
AllOf(Field(&ConditionalBranchNode::Address, Eq(0xDEADBEEF)),
Field(&ConditionalBranchNode::Fallthrough,
HasPath(Result, ElementsAre(0xDEADBEEF + 2, 0xDEADBEEF))),
Field(&ConditionalBranchNode::Target,
HasPath(Result, ElementsAre(0xDEADBEEF + 4))))))
<< PrintToString(Result);
}
TEST_F(BasicGraphBuilderTest, BuildFlowGraphNoFlowsToIndirection) {
Analysis.parseSectionContents(
{
0x75, 0x00, // 0: jne 2 [+0]
0xeb, 0xfc, // 2: jmp 0 [-4]
0xff, 0x10, // 4: callq *(%rax)
},
0xDEADBEEF);
GraphResult Result = GraphBuilder::buildFlowGraph(Analysis, 0xDEADBEEF + 4);
EXPECT_THAT(Result.OrphanedNodes, ElementsAre(0xDEADBEEF + 4));
EXPECT_THAT(Result.ConditionalBranchNodes, IsEmpty());
}
TEST_F(BasicGraphBuilderTest, BuildFlowGraphLengthExceededUpwards) {
Analysis.parseSectionContents(
{
0x75, 0x06, // 0: jne 8 [+6]
0x90, // 2: nop
0x90, // 3: nop
0x90, // 4: nop
0x90, // 5: nop
0xff, 0x10, // 6: callq *(%rax)
0x0f, 0x0b, // 8: ud2
},
0xDEADBEEF);
uint64_t PrevSearchLengthForConditionalBranch =
SearchLengthForConditionalBranch;
SearchLengthForConditionalBranch = 2;
GraphResult Result = GraphBuilder::buildFlowGraph(Analysis, 0xDEADBEEF + 6);
EXPECT_THAT(Result.OrphanedNodes, SizeIs(1));
EXPECT_THAT(Result.OrphanedNodes,
Each(HasPath(Result, ElementsAre(0xDEADBEEF + 4, 0xDEADBEEF + 5,
0xDEADBEEF + 6))))
<< PrintToString(Result);
EXPECT_THAT(Result.ConditionalBranchNodes, IsEmpty());
SearchLengthForConditionalBranch = PrevSearchLengthForConditionalBranch;
}
TEST_F(BasicGraphBuilderTest, BuildFlowGraphLengthExceededDownwards) {
Analysis.parseSectionContents(
{
0x75, 0x02, // 0: jne 4 [+2]
0xff, 0x10, // 2: callq *(%rax)
0x90, // 4: nop
0x90, // 5: nop
0x90, // 6: nop
0x90, // 7: nop
0x0f, 0x0b, // 8: ud2
},
0xDEADBEEF);
uint64_t PrevSearchLengthForUndef = SearchLengthForUndef;
SearchLengthForUndef = 2;
GraphResult Result = GraphBuilder::buildFlowGraph(Analysis, 0xDEADBEEF + 2);
EXPECT_THAT(Result.OrphanedNodes, IsEmpty());
EXPECT_THAT(
Result.ConditionalBranchNodes,
Each(AllOf(
Field(&ConditionalBranchNode::CFIProtection, Eq(false)),
Field(&ConditionalBranchNode::Address, Eq(0xDEADBEEF)),
Field(&ConditionalBranchNode::Target,
HasPath(Result, ElementsAre(0xDEADBEEF + 4, 0xDEADBEEF + 5))),
Field(&ConditionalBranchNode::Fallthrough,
HasPath(Result, ElementsAre(0xDEADBEEF + 2))))))
<< PrintToString(Result);
SearchLengthForUndef = PrevSearchLengthForUndef;
}
// This test ensures when avoiding doing repeated work we still generate the
// paths correctly. We don't need to recalculate the flow from 0x2 -> 0x3 as it
// should only need to be generated once.
TEST_F(BasicGraphBuilderTest, BuildFlowGraphWithRepeatedWork) {
Analysis.parseSectionContents(
{
0x75, 0x05, // 0: jne 7 [+5]
0x90, // 2: nop
0xff, 0x10, // 3: callq *(%rax)
0x75, 0xfb, // 5: jne 2 [-5]
0x0f, 0x0b, // 7: ud2
},
0xDEADBEEF);
GraphResult Result = GraphBuilder::buildFlowGraph(Analysis, 0xDEADBEEF + 3);
EXPECT_THAT(Result.OrphanedNodes, IsEmpty());
EXPECT_THAT(Result.ConditionalBranchNodes, SizeIs(2));
EXPECT_THAT(
Result.ConditionalBranchNodes,
Contains(AllOf(
Field(&ConditionalBranchNode::CFIProtection, Eq(true)),
Field(&ConditionalBranchNode::Address, Eq(0xDEADBEEF)),
Field(&ConditionalBranchNode::Target,
HasPath(Result, ElementsAre(0xDEADBEEF + 7))),
Field(&ConditionalBranchNode::Fallthrough,
HasPath(Result, ElementsAre(0xDEADBEEF + 2, 0xDEADBEEF + 3))))))
<< PrintToString(Result);
EXPECT_THAT(
Result.ConditionalBranchNodes,
Contains(AllOf(
Field(&ConditionalBranchNode::CFIProtection, Eq(true)),
Field(&ConditionalBranchNode::Address, Eq(0xDEADBEEF + 5)),
Field(&ConditionalBranchNode::Target,
HasPath(Result, ElementsAre(0xDEADBEEF + 2, 0xDEADBEEF + 3))),
Field(&ConditionalBranchNode::Fallthrough,
HasPath(Result, ElementsAre(0xDEADBEEF + 7))))))
<< PrintToString(Result);
EXPECT_THAT(Result.IntermediateNodes, SizeIs(1));
EXPECT_THAT(Result.IntermediateNodes,
UnorderedElementsAre(Pair(0xDEADBEEF + 2, 0xDEADBEEF + 3)));
}
TEST_F(BasicGraphBuilderTest, BuildFlowGraphComplexExample) {
// The following code has this graph:
// +----------+ +--------------+
// | 20 | <--- | 0 |
// +----------+ +--------------+
// | |
// v v
// +----------+ +--------------+
// | 21 | | 2 |
// +----------+ +--------------+
// | |
// v v
// +----------+ +--------------+
// | 22 (ud2) | +-> | 7 |
// +----------+ | +--------------+
// ^ | |
// | | v
// +----------+ | +--------------+
// | 4 | | | 8 |
// +----------+ | +--------------+
// | | |
// v | v
// +----------+ | +--------------+ +------------+
// | 6 | -+ | 9 (indirect) | <- | 13 |
// +----------+ +--------------+ +------------+
// ^ |
// | v
// +--------------+ +------------+
// | 11 | | 15 (error) |
// +--------------+ +------------+
// Or, in image format: https://i.imgur.com/aX5fCoi.png
Analysis.parseSectionContents(
{
0x75, 0x12, // 0: jne 20 [+18]
0xeb, 0x03, // 2: jmp 7 [+3]
0x75, 0x10, // 4: jne 22 [+16]
0x90, // 6: nop
0x90, // 7: nop
0x90, // 8: nop
0xff, 0x10, // 9: callq *(%rax)
0xeb, 0xfc, // 11: jmp 9 [-4]
0x75, 0xfa, // 13: jne 9 [-6]
0xe8, 0x78, 0x56, 0x34, 0x12, // 15: callq OUTOFBOUNDS [+0x12345678]
0x90, // 20: nop
0x90, // 21: nop
0x0f, 0x0b, // 22: ud2
},
0x1000);
uint64_t PrevSearchLengthForUndef = SearchLengthForUndef;
SearchLengthForUndef = 5;
GraphResult Result = GraphBuilder::buildFlowGraph(Analysis, 0x1000 + 9);
EXPECT_THAT(Result.OrphanedNodes, SizeIs(1));
EXPECT_THAT(Result.ConditionalBranchNodes, SizeIs(3));
EXPECT_THAT(
Result.OrphanedNodes,
Each(AllOf(Eq(0x1000u + 11),
HasPath(Result, ElementsAre(0x1000 + 11, 0x1000 + 9)))))
<< PrintToString(Result);
EXPECT_THAT(Result.ConditionalBranchNodes,
Contains(AllOf(
Field(&ConditionalBranchNode::CFIProtection, Eq(true)),
Field(&ConditionalBranchNode::Address, Eq(0x1000u)),
Field(&ConditionalBranchNode::Target,
HasPath(Result, ElementsAre(0x1000 + 20, 0x1000 + 21,
0x1000 + 22))),
Field(&ConditionalBranchNode::Fallthrough,
HasPath(Result, ElementsAre(0x1000 + 2, 0x1000 + 7,
0x1000 + 8, 0x1000 + 9))))))
<< PrintToString(Result);
EXPECT_THAT(Result.ConditionalBranchNodes,
Contains(AllOf(
Field(&ConditionalBranchNode::CFIProtection, Eq(true)),
Field(&ConditionalBranchNode::Address, Eq(0x1000u + 4)),
Field(&ConditionalBranchNode::Target,
HasPath(Result, ElementsAre(0x1000 + 22))),
Field(&ConditionalBranchNode::Fallthrough,
HasPath(Result, ElementsAre(0x1000 + 6, 0x1000 + 7,
0x1000 + 8, 0x1000 + 9))))))
<< PrintToString(Result);
EXPECT_THAT(
Result.ConditionalBranchNodes,
Contains(AllOf(Field(&ConditionalBranchNode::CFIProtection, Eq(false)),
Field(&ConditionalBranchNode::Address, Eq(0x1000u + 13)),
Field(&ConditionalBranchNode::Target,
HasPath(Result, ElementsAre(0x1000 + 9))),
Field(&ConditionalBranchNode::Fallthrough,
HasPath(Result, ElementsAre(0x1000 + 15))))))
<< PrintToString(Result);
SearchLengthForUndef = PrevSearchLengthForUndef;
}
} // anonymous namespace
} // end namespace cfi_verify
} // end namespace llvm