mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 11:13:28 +01:00
[InstCombine] fold fdiv with non-splat divisor to fmul: X/C --> X * (1/C)
llvm-svn: 325590
This commit is contained in:
parent
03368166ea
commit
fa138ca656
@ -79,6 +79,10 @@ public:
|
||||
/// scalar constant or a vector constant with all normal elements.
|
||||
bool isNormalFP() const;
|
||||
|
||||
/// Return true if this scalar has an exact multiplicative inverse or this
|
||||
/// vector has an exact multiplicative inverse for each element in the vector.
|
||||
bool hasExactInverseFP() const;
|
||||
|
||||
/// Return true if evaluation of this constant could trap. This is true for
|
||||
/// things like constant expressions that could divide by zero.
|
||||
bool canTrap() const;
|
||||
|
@ -228,6 +228,19 @@ bool Constant::isNormalFP() const {
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Constant::hasExactInverseFP() const {
|
||||
if (auto *CFP = dyn_cast<ConstantFP>(this))
|
||||
return CFP->getValueAPF().getExactInverse(nullptr);
|
||||
if (!getType()->isVectorTy())
|
||||
return false;
|
||||
for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
|
||||
auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
|
||||
if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Constructor to create a '0' constant of arbitrary type.
|
||||
Constant *Constant::getNullValue(Type *Ty) {
|
||||
switch (Ty->getTypeID()) {
|
||||
|
@ -1289,32 +1289,27 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
|
||||
}
|
||||
|
||||
/// Try to convert X/C into X * (1/C).
|
||||
static Instruction *foldFDivConstantDivisor(BinaryOperator &FDiv) {
|
||||
// TODO: Handle non-splat vector constants.
|
||||
const APFloat *C;
|
||||
if (!match(FDiv.getOperand(1), m_APFloat(C)))
|
||||
static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
|
||||
Constant *C;
|
||||
if (!match(I.getOperand(1), m_Constant(C)))
|
||||
return nullptr;
|
||||
|
||||
// If the constant divisor has an exact inverse, this is always safe. If not,
|
||||
// then we can still create a reciprocal if fast-math-flags allow it and the
|
||||
// constant is a regular number (not zero, infinite, or denormal).
|
||||
if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
|
||||
return nullptr;
|
||||
|
||||
// This returns false if the inverse would be a denormal.
|
||||
APFloat Reciprocal(C->getSemantics());
|
||||
bool HasRecip = C->getExactInverse(&Reciprocal);
|
||||
// If the inverse is not exact, we may still be able to convert if we are
|
||||
// not operating with strict math.
|
||||
if (!HasRecip && FDiv.hasAllowReciprocal() && C->isFiniteNonZero()) {
|
||||
Reciprocal = APFloat(C->getSemantics(), 1.0f);
|
||||
Reciprocal.divide(*C, APFloat::rmNearestTiesToEven);
|
||||
// Disallow denormal constants because we don't know what would happen
|
||||
// on all targets.
|
||||
// TODO: Function attributes can tell us that denorms are flushed?
|
||||
HasRecip = !Reciprocal.isDenormal();
|
||||
}
|
||||
|
||||
if (!HasRecip)
|
||||
// TODO: Use Intrinsic::canonicalize or let function attributes tell us that
|
||||
// denorms are flushed?
|
||||
auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
|
||||
if (!RecipC->isNormalFP())
|
||||
return nullptr;
|
||||
|
||||
auto *RecipCFP = ConstantFP::get(FDiv.getType(), Reciprocal);
|
||||
return BinaryOperator::CreateWithCopiedFlags(Instruction::FMul, RecipCFP,
|
||||
FDiv.getOperand(0), &FDiv);
|
||||
return BinaryOperator::CreateWithCopiedFlags(
|
||||
Instruction::FMul, I.getOperand(0), RecipC, &I);
|
||||
}
|
||||
|
||||
/// Try to reassociate C / X expressions where X includes another constant.
|
||||
|
@ -229,6 +229,9 @@ define float @fmul_distribute1(float %f1) {
|
||||
}
|
||||
|
||||
; (X/C1 + C2) * C3 => X/(C1/C3) + C2*C3
|
||||
; TODO: We don't convert the fast fdiv to fmul because that would be multiplication
|
||||
; by a denormal, but we could do better when we know that denormals are not a problem.
|
||||
|
||||
define double @fmul_distribute2(double %f1, double %f2) {
|
||||
; CHECK-LABEL: @fmul_distribute2(
|
||||
; CHECK-NEXT: [[TMP1:%.*]] = fdiv fast double [[F1:%.*]], 0x7FE8000000000000
|
||||
@ -345,7 +348,9 @@ define float @fmul4(float %f1, float %f2) {
|
||||
|
||||
; X / C1 * C2 => X / (C2/C1) if C1/C2 is either a special value of a denormal,
|
||||
; and C2/C1 is a normal value.
|
||||
;
|
||||
; TODO: We don't convert the fast fdiv to fmul because that would be multiplication
|
||||
; by a denormal, but we could do better when we know that denormals are not a problem.
|
||||
|
||||
define float @fmul5(float %f1, float %f2) {
|
||||
; CHECK-LABEL: @fmul5(
|
||||
; CHECK-NEXT: [[TMP1:%.*]] = fdiv fast float [[F1:%.*]], 0x47E8000000000000
|
||||
|
@ -86,11 +86,9 @@ define <2 x float> @not_exact_but_allow_recip_splat(<2 x float> %x) {
|
||||
ret <2 x float> %div
|
||||
}
|
||||
|
||||
; FIXME: Vector neglect.
|
||||
|
||||
define <2 x float> @exact_inverse_vec(<2 x float> %x) {
|
||||
; CHECK-LABEL: @exact_inverse_vec(
|
||||
; CHECK-NEXT: [[DIV:%.*]] = fdiv <2 x float> [[X:%.*]], <float 4.000000e+00, float 8.000000e+00>
|
||||
; CHECK-NEXT: [[DIV:%.*]] = fmul <2 x float> [[X:%.*]], <float 2.500000e-01, float 1.250000e-01>
|
||||
; CHECK-NEXT: ret <2 x float> [[DIV]]
|
||||
;
|
||||
%div = fdiv <2 x float> %x, <float 4.0, float 8.0>
|
||||
@ -115,6 +113,15 @@ define <2 x float> @not_exact_inverse_vec(<2 x float> %x) {
|
||||
ret <2 x float> %div
|
||||
}
|
||||
|
||||
define <2 x float> @not_exact_inverse_vec_arcp(<2 x float> %x) {
|
||||
; CHECK-LABEL: @not_exact_inverse_vec_arcp(
|
||||
; CHECK-NEXT: [[DIV:%.*]] = fmul arcp <2 x float> [[X:%.*]], <float 2.500000e-01, float 0x3FD5555560000000>
|
||||
; CHECK-NEXT: ret <2 x float> [[DIV]]
|
||||
;
|
||||
%div = fdiv arcp <2 x float> %x, <float 4.0, float 3.0>
|
||||
ret <2 x float> %div
|
||||
}
|
||||
|
||||
; (X / Y) / Z --> X / (Y * Z)
|
||||
|
||||
define float @div_with_div_numerator(float %x, float %y, float %z) {
|
||||
|
Loading…
Reference in New Issue
Block a user