1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00

Remove NormalizeAutodetect; NFC

It is cleaner to have a callback based system where the logic of
whether an add recurrence is normalized or not lives on IVUsers.

This is one step in a multi-step cleanup.

llvm-svn: 300330
This commit is contained in:
Sanjoy Das 2017-04-14 15:49:53 +00:00
parent 07bb6fb214
commit fdafc30cdf
5 changed files with 104 additions and 145 deletions

View File

@ -40,21 +40,15 @@
namespace llvm {
class Instruction;
class DominatorTree;
class Loop;
class ScalarEvolution;
class SCEV;
class Value;
/// TransformKind - Different types of transformations that
/// TransformForPostIncUse can do.
enum TransformKind {
/// Normalize - Normalize according to the given loops.
Normalize,
/// NormalizeAutodetect - Detect post-inc opportunities on new expressions,
/// update the given loop set, and normalize.
NormalizeAutodetect,
/// Denormalize - Perform the inverse transform on the expression with the
/// given loop set.
Denormalize
@ -63,16 +57,13 @@ enum TransformKind {
/// PostIncLoopSet - A set of loops.
typedef SmallPtrSet<const Loop *, 2> PostIncLoopSet;
typedef function_ref<bool(const SCEVAddRecExpr *)> NormalizePredTy;
/// TransformForPostIncUse - Transform the given expression according to the
/// given transformation kind.
const SCEV *TransformForPostIncUse(TransformKind Kind,
const SCEV *S,
Instruction *User,
Value *OperandValToReplace,
PostIncLoopSet &Loops,
ScalarEvolution &SE,
DominatorTree &DT);
const SCEV *TransformForPostIncUse(TransformKind Kind, const SCEV *S,
Optional<NormalizePredTy> Pred,
PostIncLoopSet &Loops, ScalarEvolution &SE);
}
#endif

View File

@ -117,6 +117,50 @@ static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT,
return true;
}
/// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
/// and now we need to decide whether the user should use the preinc or post-inc
/// value. If this user should use the post-inc version of the IV, return true.
///
/// Choosing wrong here can break dominance properties (if we choose to use the
/// post-inc value when we cannot) or it can end up adding extra live-ranges to
/// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
/// should use the post-inc value).
static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand,
const Loop *L, DominatorTree *DT) {
// If the user is in the loop, use the preinc value.
if (L->contains(User))
return false;
BasicBlock *LatchBlock = L->getLoopLatch();
if (!LatchBlock)
return false;
// Ok, the user is outside of the loop. If it is dominated by the latch
// block, use the post-inc value.
if (DT->dominates(LatchBlock, User->getParent()))
return true;
// There is one case we have to be careful of: PHI nodes. These little guys
// can live in blocks that are not dominated by the latch block, but (since
// their uses occur in the predecessor block, not the block the PHI lives in)
// should still use the post-inc value. Check for this case now.
PHINode *PN = dyn_cast<PHINode>(User);
if (!PN || !Operand)
return false; // not a phi, not dominated by latch block.
// Look at all of the uses of Operand by the PHI node. If any use corresponds
// to a block that is not dominated by the latch block, give up and use the
// preincremented value.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) == Operand &&
!DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
return false;
// Okay, all uses of Operand by PN are in predecessor blocks that really are
// dominated by the latch block. Use the post-incremented value.
return true;
}
/// AddUsersImpl - Inspect the specified instruction. If it is a
/// reducible SCEV, recursively add its users to the IVUsesByStride set and
/// return true. Otherwise, return false.
@ -207,19 +251,36 @@ bool IVUsers::AddUsersImpl(Instruction *I,
// The regular return value here is discarded; instead of recording
// it, we just recompute it when we need it.
const SCEV *OriginalISE = ISE;
ISE = TransformForPostIncUse(NormalizeAutodetect,
ISE, User, I,
NewUse.PostIncLoops,
*SE, *DT);
auto NormalizePred = [&](const SCEVAddRecExpr *AR) {
// We only allow affine AddRecs to be normalized, otherwise we would not
// be able to correctly denormalize.
// e.g. {1,+,3,+,2} == {-2,+,1,+,2} + {3,+,2}
// Normalized form: {-2,+,1,+,2}
// Denormalized form: {1,+,3,+,2}
//
// However, denormalization would use a different step expression than
// normalization (see getPostIncExpr), generating the wrong final
// expression: {-2,+,1,+,2} + {1,+,2} => {-1,+,3,+,2}
auto *L = AR->getLoop();
bool Result =
AR->isAffine() && IVUseShouldUsePostIncValue(User, I, L, DT);
if (Result)
NewUse.PostIncLoops.insert(L);
return Result;
};
ISE = TransformForPostIncUse(Normalize, ISE,
Optional<NormalizePredTy>(NormalizePred),
NewUse.PostIncLoops, *SE);
// PostIncNormalization effectively simplifies the expression under
// pre-increment assumptions. Those assumptions (no wrapping) might not
// hold for the post-inc value. Catch such cases by making sure the
// transformation is invertible.
if (OriginalISE != ISE) {
const SCEV *DenormalizedISE =
TransformForPostIncUse(Denormalize, ISE, User, I,
NewUse.PostIncLoops, *SE, *DT);
const SCEV *DenormalizedISE = TransformForPostIncUse(
Denormalize, ISE, None, NewUse.PostIncLoops, *SE);
// If we normalized the expression, but denormalization doesn't give the
// original one, discard this user.
@ -337,11 +398,9 @@ const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const {
/// getExpr - Return the expression for the use.
const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const {
return
TransformForPostIncUse(Normalize, getReplacementExpr(IU),
IU.getUser(), IU.getOperandValToReplace(),
const_cast<PostIncLoopSet &>(IU.getPostIncLoops()),
*SE, *DT);
return TransformForPostIncUse(
Normalize, getReplacementExpr(IU), None,
const_cast<PostIncLoopSet &>(IU.getPostIncLoops()), *SE);
}
static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) {

View File

@ -1268,8 +1268,8 @@ Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
if (PostIncLoops.count(L)) {
PostIncLoopSet Loops;
Loops.insert(L);
Normalized = cast<SCEVAddRecExpr>(TransformForPostIncUse(
Normalize, S, nullptr, nullptr, Loops, SE, SE.DT));
Normalized = cast<SCEVAddRecExpr>(
TransformForPostIncUse(Normalize, S, None, Loops, SE));
}
// Strip off any non-loop-dominating component from the addrec start.

View File

@ -12,88 +12,41 @@
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ScalarEvolutionNormalization.h"
using namespace llvm;
/// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
/// and now we need to decide whether the user should use the preinc or post-inc
/// value. If this user should use the post-inc version of the IV, return true.
///
/// Choosing wrong here can break dominance properties (if we choose to use the
/// post-inc value when we cannot) or it can end up adding extra live-ranges to
/// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
/// should use the post-inc value).
static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand,
const Loop *L, DominatorTree *DT) {
// If the user is in the loop, use the preinc value.
if (L->contains(User)) return false;
BasicBlock *LatchBlock = L->getLoopLatch();
if (!LatchBlock)
return false;
// Ok, the user is outside of the loop. If it is dominated by the latch
// block, use the post-inc value.
if (DT->dominates(LatchBlock, User->getParent()))
return true;
// There is one case we have to be careful of: PHI nodes. These little guys
// can live in blocks that are not dominated by the latch block, but (since
// their uses occur in the predecessor block, not the block the PHI lives in)
// should still use the post-inc value. Check for this case now.
PHINode *PN = dyn_cast<PHINode>(User);
if (!PN || !Operand) return false; // not a phi, not dominated by latch block.
// Look at all of the uses of Operand by the PHI node. If any use corresponds
// to a block that is not dominated by the latch block, give up and use the
// preincremented value.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) == Operand &&
!DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
return false;
// Okay, all uses of Operand by PN are in predecessor blocks that really are
// dominated by the latch block. Use the post-incremented value.
return true;
}
namespace {
/// Hold the state used during post-inc expression transformation, including a
/// map of transformed expressions.
class PostIncTransform {
TransformKind Kind;
Optional<NormalizePredTy> Pred;
PostIncLoopSet &Loops;
ScalarEvolution &SE;
DominatorTree &DT;
DenseMap<const SCEV*, const SCEV*> Transformed;
public:
PostIncTransform(TransformKind kind, PostIncLoopSet &loops,
ScalarEvolution &se, DominatorTree &dt):
Kind(kind), Loops(loops), SE(se), DT(dt) {}
PostIncTransform(TransformKind kind, Optional<NormalizePredTy> Pred,
PostIncLoopSet &loops, ScalarEvolution &se)
: Kind(kind), Pred(Pred), Loops(loops), SE(se) {}
const SCEV *TransformSubExpr(const SCEV *S, Instruction *User,
Value *OperandValToReplace);
const SCEV *TransformSubExpr(const SCEV *S);
protected:
const SCEV *TransformImpl(const SCEV *S, Instruction *User,
Value *OperandValToReplace);
const SCEV *TransformImpl(const SCEV *S);
};
} // namespace
/// Implement post-inc transformation for all valid expression types.
const SCEV *PostIncTransform::
TransformImpl(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
const SCEV *PostIncTransform::TransformImpl(const SCEV *S) {
if (const SCEVCastExpr *X = dyn_cast<SCEVCastExpr>(S)) {
const SCEV *O = X->getOperand();
const SCEV *N = TransformSubExpr(O, User, OperandValToReplace);
const SCEV *N = TransformSubExpr(O);
if (O != N)
switch (S->getSCEVType()) {
case scZeroExtend: return SE.getZeroExtendExpr(N, S->getType());
@ -108,44 +61,13 @@ TransformImpl(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
// An addrec. This is the interesting part.
SmallVector<const SCEV *, 8> Operands;
const Loop *L = AR->getLoop();
// The addrec conceptually uses its operands at loop entry.
Instruction *LUser = &L->getHeader()->front();
transform(
AR->operands(), std::back_inserter(Operands),
[&](const SCEV *Op) { return TransformSubExpr(Op, LUser, nullptr); });
transform(AR->operands(), std::back_inserter(Operands),
[&](const SCEV *Op) { return TransformSubExpr(Op); });
// Conservatively use AnyWrap until/unless we need FlagNW.
const SCEV *Result = SE.getAddRecExpr(Operands, L, SCEV::FlagAnyWrap);
switch (Kind) {
case NormalizeAutodetect:
// Normalize this SCEV by subtracting the expression for the final step.
// We only allow affine AddRecs to be normalized, otherwise we would not
// be able to correctly denormalize.
// e.g. {1,+,3,+,2} == {-2,+,1,+,2} + {3,+,2}
// Normalized form: {-2,+,1,+,2}
// Denormalized form: {1,+,3,+,2}
//
// However, denormalization would use a different step expression than
// normalization (see getPostIncExpr), generating the wrong final
// expression: {-2,+,1,+,2} + {1,+,2} => {-1,+,3,+,2}
if (AR->isAffine() &&
IVUseShouldUsePostIncValue(User, OperandValToReplace, L, &DT)) {
const SCEV *TransformedStep =
TransformSubExpr(AR->getStepRecurrence(SE),
User, OperandValToReplace);
Result = SE.getMinusSCEV(Result, TransformedStep);
Loops.insert(L);
}
#if 0
// This assert is conceptually correct, but ScalarEvolution currently
// sometimes fails to canonicalize two equal SCEVs to exactly the same
// form. It's possibly a pessimization when this happens, but it isn't a
// correctness problem, so disable this assert for now.
assert(S == TransformSubExpr(Result, User, OperandValToReplace) &&
"SCEV normalization is not invertible!");
#endif
break;
case Normalize:
// We want to normalize step expression, because otherwise we might not be
// able to denormalize to the original expression.
@ -161,10 +83,9 @@ TransformImpl(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
// (100 /u {1,+,1}<%bb16>)}<%bb25>
// Note that the initial value changes after normalization +
// denormalization, which isn't correct.
if (Loops.count(L)) {
if ((Pred && (*Pred)(AR)) || (!Pred && Loops.count(L))) {
const SCEV *TransformedStep =
TransformSubExpr(AR->getStepRecurrence(SE),
User, OperandValToReplace);
TransformSubExpr(AR->getStepRecurrence(SE));
Result = SE.getMinusSCEV(Result, TransformedStep);
}
#if 0
@ -178,8 +99,7 @@ TransformImpl(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
// stated above.
if (Loops.count(L)) {
const SCEV *TransformedStep =
TransformSubExpr(AR->getStepRecurrence(SE),
User, OperandValToReplace);
TransformSubExpr(AR->getStepRecurrence(SE));
Result = SE.getAddExpr(Result, TransformedStep);
}
break;
@ -194,7 +114,7 @@ TransformImpl(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
for (SCEVNAryExpr::op_iterator I = X->op_begin(), E = X->op_end();
I != E; ++I) {
const SCEV *O = *I;
const SCEV *N = TransformSubExpr(O, User, OperandValToReplace);
const SCEV *N = TransformSubExpr(O);
Changed |= N != O;
Operands.push_back(N);
}
@ -213,8 +133,8 @@ TransformImpl(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
if (const SCEVUDivExpr *X = dyn_cast<SCEVUDivExpr>(S)) {
const SCEV *LO = X->getLHS();
const SCEV *RO = X->getRHS();
const SCEV *LN = TransformSubExpr(LO, User, OperandValToReplace);
const SCEV *RN = TransformSubExpr(RO, User, OperandValToReplace);
const SCEV *LN = TransformSubExpr(LO);
const SCEV *RN = TransformSubExpr(RO);
if (LO != LN || RO != RN)
return SE.getUDivExpr(LN, RN);
return S;
@ -225,9 +145,7 @@ TransformImpl(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
/// Manage recursive transformation across an expression DAG. Revisiting
/// expressions would lead to exponential recursion.
const SCEV *PostIncTransform::
TransformSubExpr(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
const SCEV *PostIncTransform::TransformSubExpr(const SCEV *S) {
if (isa<SCEVConstant>(S) || isa<SCEVUnknown>(S))
return S;
@ -235,20 +153,17 @@ TransformSubExpr(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
if (Result)
return Result;
Result = TransformImpl(S, User, OperandValToReplace);
Result = TransformImpl(S);
Transformed[S] = Result;
return Result;
}
/// Top level driver for transforming an expression DAG into its requested
/// post-inc form (either "Normalized" or "Denormalized").
const SCEV *llvm::TransformForPostIncUse(TransformKind Kind,
const SCEV *S,
Instruction *User,
Value *OperandValToReplace,
const SCEV *llvm::TransformForPostIncUse(TransformKind Kind, const SCEV *S,
Optional<NormalizePredTy> Pred,
PostIncLoopSet &Loops,
ScalarEvolution &SE,
DominatorTree &DT) {
PostIncTransform Transform(Kind, Loops, SE, DT);
return Transform.TransformSubExpr(S, User, OperandValToReplace);
ScalarEvolution &SE) {
PostIncTransform Transform(Kind, Pred, Loops, SE);
return Transform.TransformSubExpr(S);
}

View File

@ -3160,8 +3160,7 @@ void LSRInstance::CollectFixupsAndInitialFormulae() {
if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
// S is normalized, so normalize N before folding it into S
// to keep the result normalized.
N = TransformForPostIncUse(Normalize, N, CI, nullptr,
TmpPostIncLoops, SE, DT);
N = TransformForPostIncUse(Normalize, N, None, TmpPostIncLoops, SE);
Kind = LSRUse::ICmpZero;
S = SE.getMinusSCEV(N, S);
}
@ -4800,10 +4799,7 @@ Value *LSRInstance::Expand(const LSRUse &LU,
// If we're expanding for a post-inc user, make the post-inc adjustment.
PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
Reg = TransformForPostIncUse(Denormalize, Reg,
LF.UserInst, LF.OperandValToReplace,
Loops, SE, DT);
Reg = TransformForPostIncUse(Denormalize, Reg, None, Loops, SE);
Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
}
@ -4814,9 +4810,7 @@ Value *LSRInstance::Expand(const LSRUse &LU,
// If we're expanding for a post-inc user, make the post-inc adjustment.
PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
LF.UserInst, LF.OperandValToReplace,
Loops, SE, DT);
ScaledS = TransformForPostIncUse(Denormalize, ScaledS, None, Loops, SE);
if (LU.Kind == LSRUse::ICmpZero) {
// Expand ScaleReg as if it was part of the base regs.