This is a micro optimization, but also makes the code a bit more flexible.
The MRIMembers variable is a short term hack. It is going away in the next
commit.
llvm-svn: 220334
This requires incorporating __GNUC_PATCHLEVEL__ into our prerequisite
check, and renaming our __GNUC_PREREQ to LLVM_GNUC_PREREQ, since it is
now functionally different.
Patch by Chilledheart!
Differential Revision: http://reviews.llvm.org/D5879
llvm-svn: 220332
combineMetadata is used when merging two instructions into one. This change teaches it how to merge 'nonnull' - i.e. only preserve it on the new instruction if it's set on both sources. This isn't actually used yet since I haven't adjusted any of the call sites to pass in nonnull as a 'known metadata'.
llvm-svn: 220325
When changing the type of a load in Chandler's recent InstCombine changes, we can preserve the new 'nonnull' metadata.
I considered adding an assert since 'nonnull' is only valid on pointer types, but casting a pointer to a non-pointer would involve more than a bitcast anyways. If someone extends this transform to handle more than bitcasts, the verifier will report the malformed IR, so a separate assertion isn't needed. Also, the fpmath flags would have the same problem.
llvm-svn: 220324
This enables targets to adapt their pass pipeline to the register
allocator in use. For example, with the AArch64 backend, using PBQP
with the cortex-a57, the FPLoadBalancing pass is no longer necessary.
llvm-svn: 220321
This function was complicated by the fact that it tried to perform
canonicalizations that were already preformed by InstSimplify. Remove
this extra code and move the tests over to InstSimplify. Add asserts to
make sure our preconditions hold before we make any assumptions.
llvm-svn: 220314
It is just too easy to use a virtual register intead of a NodeId without a
compiler warning. This does not fix the fundamental problem, i.e. both
have the same underlying types, but increases the likelyhood to detect it.
llvm-svn: 220303
With VSX enabled, test/CodeGen/PowerPC/recipest.ll exposes a bug in
the FMA mutation pass. If we have a situation where a killed product
register is the same register as the FMA target, such as:
%vreg5<def,tied1> = XSNMSUBADP %vreg5<tied0>, %vreg11, %vreg5,
%RM<imp-use>; VSFRC:%vreg5 F8RC:%vreg11
then the substitution makes no sense. We end up getting a crash when
we try to extend the interval associated with the killed product
register, as there is already a live range for %vreg5 there. This
patch just disables the mutation under those circumstances.
Since recipest.ll generates different code with VMX enabled, I've
modified that test to use -mattr=-vsx. I've borrowed the code from
that test that exposed the bug and placed it in fma-mutate.ll, where
it tests several mutation opportunities including the "bad" one.
llvm-svn: 220290
The 32-bit variants of the NEON scalar<->GPR move instructions are
also available in VFPv2. The 8- and 16-bit variants do require NEON.
Note that the checks in the test file are all -DAG because they are
checking a mixture of stdout and stderr, and the ordering is not
guaranteed.
llvm-svn: 220288
Summary: Fixed memory accesses with rbp as a base or an index register.
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5819
llvm-svn: 220283
inttoptr or ptrtoint cast provided there is datalayout available.
Eventually, the datalayout can just be required but in practice it will
always be there today.
To go with the ability to expose available values requiring a ptrtoint
or inttoptr cast, helpers are added to perform one of these three casts.
These smarts are necessary to finish canonicalizing loads and stores to
the operational type requirements without regressing fundamental
combines.
I've added some test cases. These should actually improve as the load
combining and store combining improves, but they may fundamentally be
highlighting some missing combines for select in addition to exercising
the specific added logic to load analysis.
llvm-svn: 220277
Every target we support has support for assembly that looks like
a = b - c
.long a
What is special about MachO is that the above combination suppresses the
production of a relocation.
With this change we avoid producing the intermediary labels when they don't
add any value.
llvm-svn: 220256
When functions are inlined, instructions without debug information are
attributed to the call site's DebugLoc. After inlining, inlined static
allocas are moved to the caller's entry block, adjacent to the caller's
original static alloca instructions. By retaining the call site's
DebugLoc, these instructions could cause instructions that were
subsequently inserted at the entry block to pick up the same DebugLoc.
Patch by Wolfgang Pieb!
llvm-svn: 220255
the CGO build environment. This lets things like -rpath propagate down
to the C++ code that is built along side the Go bindings when testing
them.
Patch by Peter Collingbourne, and verified that it works by me.
llvm-svn: 220252
Our metadata scheme lazily assigns IDs to string metadata, but we have a mechanism to preassign them as well. Using a preassigned ID is helpful since we get compile time type checking, and avoid some (minimal) string construction and comparison. This change adds enum value for three existing metadata types:
+ MD_nontemporal = 9, // "nontemporal"
+ MD_mem_parallel_loop_access = 10, // "llvm.mem.parallel_loop_access"
+ MD_nonnull = 11 // "nonnull"
I went through an updated various uses as well. I made no attempt to get all uses; I focused on the ones which were easily grepable and easily to translate. For example, there were several items in LoopInfo.cpp I chose not to update.
llvm-svn: 220248
Range metadata applies to loads, call, and invokes. We were validating that metadata applied to loads was correct according to the LangRef, but we were not validating metadata applied to calls or invokes. This change extracts the checking functionality to a common location, reuses it for all valid locations, and adds a simple test to ensure a misused range on a call gets reported.
llvm-svn: 220246
X86 code to lower VSELECT messed a bit with the bits set in the mask of VSELECT
when it knows it can be lowered into BLEND. Indeed, only the high bits need to be
set for those and it optimizes those accordingly.
However, when the mask is a compile time constant, the lowering will be handled
by the generic optimizer and those modifications will generate bad code in the
generic optimizer.
This patch fixes that by preventing the optimization if the VSELECT will be
handled by the generic optimizer.
<rdar://problem/18675020>
llvm-svn: 220242
The newly introduced 'nonnull' metadata is analogous to existing 'nonnull' attributes, but applies to load instructions rather than call arguments or returns. Long term, it would be nice to combine these into a single construct. The value of the load is allowed to vary between successive loads, but null is not a valid value to be loaded by any load marked nonnull.
Reviewed by: Hal Finkel
Differential Revision: http://reviews.llvm.org/D5220
llvm-svn: 220240
This patch improves support for commutative instructions in the x86 memory folding implementation by attempting to fold a commuted version of the instruction if the original folding fails - if that folding fails as well the instruction is 're-commuted' back to its original order before returning.
Updated version of r219584 (reverted in r219595) - the commutation attempt now explicitly ensures that neither of the commuted source operands are tied to the destination operand / register, which was the source of all the regressions that occurred with the original patch attempt.
Added additional regression test case provided by Joerg Sonnenberger.
Differential Revision: http://reviews.llvm.org/D5818
llvm-svn: 220239
The previous code had a few problems, motivating the choices here.
1. It could create instructions clobbering CPSR, but the incoming MachineInstr
didn't reflect this. A potential source of corruption. This is why the patch
has a new PseudoInst for before lowering.
2. Similarly, there was some code to handle the incoming instruction not being
ARMCC::AL, but this would have caused massive problems if it was actually
invoked when a complex offset needing more than one instruction was requested.
3. It wasn't designed to handle unaligned pointers (or offsets). These should
probably be minimised anyway, but the code needs to deal with them properly
regardless.
4. It had some rather dubious ad-hoc code to avoid calling
emitThumbRegPlusImmediate, a function which should be designed to do precisely
this job.
We seem to cover the common cases correctly now, and hopefully can enhance
emitThumbRegPlusImmediate to handle any extra optimisations we need to add in
future.
llvm-svn: 220236