This should allow users of the library to get a range to iterate through
all the subcommands that are registered to the global parser. This
allows users to define subcommands in libraries that self-register to
have dispatch done at a different stage (like main). It allows for
writing code like the following:
for (auto *S : cl::getRegisteredSubcommands()) {
if (*S) {
// Dispatch on S->getName().
}
}
This change also contains tests that show this usage pattern.
Reviewers: zturner, dblaikie, echristo
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D24489
llvm-svn: 281290
This patch reverses the edge from DIGlobalVariable to GlobalVariable.
This will allow us to more easily preserve debug info metadata when
manipulating global variables.
Fixes PR30362. A program for upgrading test cases is attached to that
bug.
Differential Revision: http://reviews.llvm.org/D20147
llvm-svn: 281284
Remove createNode() and any API that depending on it, and add
HasCreateNode to the list of checks for HasObsoleteCustomizations. Now
an ilist *never* allocates (this was already true for iplist).
This factors out all the differences between iplist and ilist. I'll aim
to rename both to "owning_ilist" eventually, to call out the interesting
(not exactly intrusive) ownership semantics. In the meantime, I've left
both names around to reduce code churn.
One of the deleted APIs is the ilist copy constructor. I've lifted up
and tested iplist::cloneFrom (ala simple_ilist::cloneFrom) as a
replacement.
Users of ilist<> and iplist<> that want the list to allocate nodes have
a few options:
- use std::list;
- use AllocatorList or BumpPtrList (or build a similarly trivial list);
- use cloneFrom (which is explicit at the call site); or
- allocate at the call site.
See r280573, r281177, r281181, and r281182 for examples of what to do if
you're updating out-of-tree code.
llvm-svn: 281184
- Add AllocatorList, a non-intrusive list that owns an LLVM-style
allocator and provides a std::list-like interface (trivially built on
top of simple_ilist),
- add a typedef (and unit tests) for BumpPtrList, and
- use BumpPtrList for the list of llvm::yaml::Token (i.e., TokenQueueT).
TokenQueueT has no need for the complexity of an intrusive list. The
only reason to inherit from ilist was to customize the allocator.
TokenQueueT was the only example in-tree of using ilist<> in a truly
non-intrusive way.
Moreover, this removes the final use of the non-intrusive
ilist_traits<>::createNode (after r280573, r281177, and r281181). I
have a WIP patch that removes this customization point (and the API that
relies on it) that I plan to commit soon.
Note: AllocatorList owns the allocator, which limits the viable API
(e.g., splicing must be on the same list). For now I've left out
any problematic API. It wouldn't be hard to split AllocatorList into
two layers: an Impl class that calls DerivedT::getAlloc (via CRTP), and
derived classes that handle Allocator ownership/reference/etc semantics;
and then implement splice with appropriate assertions; but TBH we should
probably just customize the std::list allocators at that point.
llvm-svn: 281182
Now that MachineBasicBlock::reverse_instr_iterator knows when it's at
the end (since r281168 and r281170), implement
MachineBasicBlock::reverse_iterator directly on top of an
ilist::reverse_iterator by adding an IsReverse template parameter to
MachineInstrBundleIterator. This replaces another hard-to-reason-about
use of std::reverse_iterator on list iterators, matching the changes for
ilist::reverse_iterator from r280032 (see the "out of scope" section at
the end of that commit message). MachineBasicBlock::reverse_iterator
now has a handle to the current node and has obvious invalidation
semantics.
r280032 has a more detailed explanation of how list-style reverse
iterators (invalidated when the pointed-at node is deleted) are
different from vector-style reverse iterators like std::reverse_iterator
(invalidated on every operation). A great motivating example is this
commit's changes to lib/CodeGen/DeadMachineInstructionElim.cpp.
Note: If your out-of-tree backend deletes instructions while iterating
on a MachineBasicBlock::reverse_iterator or converts between
MachineBasicBlock::iterator and MachineBasicBlock::reverse_iterator,
you'll need to update your code in similar ways to r280032. The
following table might help:
[Old] ==> [New]
delete &*RI, RE = end() delete &*RI++
RI->erase(), RE = end() RI++->erase()
reverse_iterator(I) std::prev(I).getReverse()
reverse_iterator(I) ++I.getReverse()
--reverse_iterator(I) I.getReverse()
reverse_iterator(std::next(I)) I.getReverse()
RI.base() std::prev(RI).getReverse()
RI.base() ++RI.getReverse()
--RI.base() RI.getReverse()
std::next(RI).base() RI.getReverse()
(For more details, have a look at r280032.)
llvm-svn: 281172
Add an assertion to the MachineInstrBundleIterator from instr_iterator
that the underlying iterator is valid. This is possible know that we
can check ilist_node::isSentinel (since r281168), and is consistent with
the constructors from MachineInstr* and MachineInstr&.
Avoiding the new assertion in operator== and operator!= requires four
(!!!!) new overloads each.
(As an aside, I'm strongly in favour of:
- making the conversion from instr_iterator explicit;
- making the conversion from pointer explicit;
- making the conversion from reference explicit; and
- removing all the extra overloads of operator== and operator!= except
const_instr_iterator.
I'm not signing up for that at this point, but being clear about when
something is an MachineInstr-iterator (possibly instr_end()) vs
MachineInstr-bundle-iterator (possibly end()) vs MachineInstr* (possibly
nullptr) vs MachineInstr& (known valid) would surely make code
cleaner... and it would remove a ton of boilerplate from
MachineInstrBundleIterator operators.)
llvm-svn: 281170
This is a prep commit before fixing MachineBasicBlock::reverse_iterator
invalidation semantics, ala r281167 for ilist::reverse_iterator. This
changes MachineBasicBlock::Instructions to track which node is the
sentinel regardless of LLVM_ENABLE_ABI_BREAKING_CHECKS.
There's almost no functionality change (aside from ABI). However, in
the rare configuration:
#if !defined(NDEBUG) && !defined(LLVM_ENABLE_ABI_BREAKING_CHECKS)
the isKnownSentinel() assertions in ilist_iterator<>::operator* suddenly
have teeth for MachineInstr. If these assertions start firing for your
out-of-tree backend, have a look at the suggestions in the commit
message for r279314, and at some of the commits leading up to it that
avoid dereferencing the end() iterator.
llvm-svn: 281168
This adds two declarative configuration options for intrusive lists
(available for simple_ilist, iplist, and ilist). Both of these options
affect ilist_node interoperability and need to be passed both to the
node and the list. Instead of adding a new traits class, they're
specified as optional template parameters (in any order).
The two options:
1. Pass ilist_sentinel_tracking<true> or ilist_sentinel_tracking<false>
to control whether there's a bit on ilist_node "prev" pointer
indicating whether it's the sentinel. The default behaviour is to
use a bit if and only if LLVM_ENABLE_ABI_BREAKING_CHECKS.
2. Pass ilist_tag<TagA> and ilist_tag<TagB> to allow insertion of a
single node into two different lists (simultaneously).
I have an immediate use-case for (1) ilist_sentinel_tracking: fixing the
validation semantics of MachineBasicBlock::reverse_iterator to match
ilist::reverse_iterator (ala r280032: see the comments at the end of the
commit message there). I'm adding (2) ilist_tag in the same commit to
validate that the options framework supports expansion. Justin Bogner
mentioned this might enable a possible cleanup in SelectionDAG, but I'll
leave this to others to explore. In the meantime, the unit tests and
the comments for simple_ilist and ilist_node have usage examples.
Note that there's a layer of indirection to support optional,
out-of-order, template paramaters. Internal classes are templated on an
instantiation of the non-variadic ilist_detail::node_options.
User-facing classes use ilist_detail::compute_node_options to compute
the correct instantiation of ilist_detail::node_options.
The comments for ilist_detail::is_valid_option describe how to add new
options (e.g., ilist_packed_int<int NumBits>).
llvm-svn: 281167
... and make a few ilist-internal API changes, in preparation for
changing how ilist_node is templated. The only effect for ilist users
should be changing the friend target from llvm::ilist_node_access to
llvm::ilist_detail::NodeAccess (which is only necessary when they
inherit privately from ilist_node).
- Split out SpecificNodeAccess, which has overloads of getNodePtr and
getValuePtr that are untemplated.
- Use more typedefs to prevent more changes later.
- Force inheritance to use *NodeAccess (to emphasize that ilist *users*
shouldn't be doing this).
There should be no functionality change here.
llvm-svn: 281142
mapping a yaml field to an object in code has always been
a stateless operation. You could still pass state by using the
`setContext` function of the YAMLIO object, but this represented
global state for the entire yaml input. In order to have
context-sensitive state, it is necessary to pass this state in
at the granularity of an individual mapping.
This patch adds support for this type of context-sensitive state.
You simply pass an additional argument of type T to the
`mapRequired` or `mapOptional` functions, and provided you have
specialized a `MappingContextTraits<U, T>` class with the
appropriate mapping function, you can pass this context into
the mapping function.
Reviewed By: chandlerc
Differential Revision: https://reviews.llvm.org/D24162
llvm-svn: 280977
In the top-level CMakeLists.txt, we set CMAKE_BUILD_WITH_INSTALL_RPATH to ON,
and then for the unit tests we set it to <test>/../../lib. This works for tests
that live in unittest/<whatever>, but not for those that live in subdirectories
e.g. unittest/Transforms/IPO or unittest/ExecutionEngine/Orc. When building
with BUILD_SHARED_LIBRARIES, such tests don't manage to find their libraries.
Since the tests are run from the build directory, it makes sense to set their
RPATH for the build tree, rather than the install tree. This is the default in
CMake since 2.6, so all we have to do is set CMAKE_BUILD_WITH_INSTALL_RPATH to
OFF for the unit tests.
llvm-svn: 280791
Use ADT/BitmaskEnum for DINode::DIFlags for the following purposes:
Get rid of unsigned int for flags to avoid problems on platforms with sizeof(int) < 4
Flags are now strongly typed
Patch by: Victor Leschuk <vleschuk@gmail.com>
Differential Revision: https://reviews.llvm.org/D23766
llvm-svn: 280700
Use ADT/BitmaskEnum for DINode::DIFlags for the following purposes:
* Get rid of unsigned int for flags to avoid problems on platforms with sizeof(int) < 4
* Flags are now strongly typed
Patch by: Victor Leschuk <vleschuk@gmail.com>
Differential Revision: https://reviews.llvm.org/D23766
llvm-svn: 280686
This was mistakenly committed. The world isn't ready for this test, the
test code has horrible debugging code in it that should never have
landed in tree, it currently passes because of bugs elsewhere, and it
needs to be rewritten to not be susceptible to passing for the wrong
reasons.
I'll re-land this in a better form when the prerequisite patches land.
So sorry that I got this mixed into a series of commits that *were*
ready to land. I shouldn't have. =[ What's worse is that it stuck around
for so long and I discovered it while fixing the underlying bug that
caused it to pass.
llvm-svn: 280620
This test was using the wrong type, and so not actually testing much.
ilist_iterator constructors weren't going through ilist_node_access, so
they didn't actually work with private inheritance.
llvm-svn: 280564
constructor when trying to do copy construction by adding an explicit
move constructor.
Will watch the bots to discover if this is sufficient.
llvm-svn: 280479
Crash was possible if match() method
was called on object that was moved or object
created with empty constructor.
Testcases updated.
DIfferential revision: https://reviews.llvm.org/D24123
llvm-svn: 280473
This wasn't really well explicitly tested with a nice unittest before.
It seems good to have reasonably broken out unittests for this kind of
functionality as I'm workin go other invalidation features to make sure
none of the existing ones regress.
This still has too much duplicated code, I plan to factor that out in
a subsequent commit to use common helpers for repeated parts of this.
llvm-svn: 280447
If we failed to commit the buffer but did not die to a signal, the temp
file would remain on disk on Windows. Having an open file mapping and
file handle prevents the file from being deleted. I am choosing not to
add an assertion of success on the temp file removal, since virus
scanners and other environmental things can often cause removal to fail
in real world tools.
Also fix more temp file leaks in unit tests.
llvm-svn: 280445
passes.
This simplifies the test some and makes it more focused and clear what
is being tested. It will also make it much easier to extend with further
testing of different pass behaviors.
I've also replaced a pointless module pass with running the requires
pass directly as that is all that it was really doing.
llvm-svn: 280444
This is useful when need to defer the construction,
e.g. using Regex as a member of class.
Differential revision: https://reviews.llvm.org/D24101
llvm-svn: 280339
Many lists want to override only allocation semantics, or callbacks for
iplist. Split these up to prevent code duplication.
- Specialize ilist_alloc_traits to change the implementations of
deleteNode() and createNode().
- One common desire is to do nothing deleteNode() and disable
createNode(). Specialize ilist_alloc_traits to inherit from
ilist_noalloc_traits for that behaviour.
- Specialize ilist_callback_traits to use the addNodeToList(),
removeNodeFromList(), and transferNodesFromList() callbacks.
As a drive-by, add some coverage to the callback-related unit tests.
llvm-svn: 280128
Split out a new, low-level intrusive list type with clear semantics.
Unlike iplist (and ilist), all operations on simple_ilist are intrusive,
and simple_ilist never takes ownership of its nodes. This enables an
intuitive API that has the right defaults for intrusive lists.
- insert() takes references (not pointers!) to nodes (in iplist/ilist,
passing a reference will cause the node to be copied).
- erase() takes only iterators (like std::list), and does not destroy
the nodes.
- remove() takes only references and has the same behaviour as erase().
- clear() does not destroy the nodes.
- The destructor does not destroy the nodes.
- New API {erase,remove,clear}AndDispose() take an extra Disposer
functor for callsites that want to call some disposal routine (e.g.,
std::default_delete).
This list is not currently configurable, and has no callbacks.
The initial motivation was to fix iplist<>::sort to work correctly (even
with callbacks in ilist_traits<>). iplist<> uses simple_ilist<>::sort
directly. The new test in unittests/IR/ModuleTest.cpp crashes without
this commit.
Fixing sort() via a low-level layer provided a good opportunity to:
- Unit test the low-level functionality thoroughly.
- Modernize the API, largely inspired by other intrusive list
implementations.
Here's a sketch of a longer-term plan:
- Create BumpPtrList<>, a non-intrusive list implemented using
simple_ilist<>, and use it for the Token list in
lib/Support/YAMLParser.cpp. This will factor out the only real use of
createNode().
- Evolve the iplist<> and ilist<> APIs in the direction of
simple_ilist<>, making allocation/deallocation explicit at call sites
(similar to simple_ilist<>::eraseAndDispose()).
- Factor out remaining calls to createNode() and deleteNode() and remove
the customization from ilist_traits<>.
- Transition uses of iplist<>/ilist<> that don't need callbacks over to
simple_ilist<>.
llvm-svn: 280107
This reverts commit r280016, and the followups of r280017, r280027,
r280051, r280058, and r280059.
MSVC's implementation of std::promise does not get along with
llvm::Error. It uses its promised value too much like a normal value
type.
llvm-svn: 280100
behaviors, and add a callB (blacking call) primitive.
callB is a blocking call primitive for threaded code where the RPC responses are
being processed on a separate thread. (For single threaded code callST should
continue to be used instead).
No unit test yet: Last time I commited a threaded unit test it deadlocked on
one of the s390x builders. I'll try to re-enable that test first, and add a new
test if I can sort out the deadlock issue.
llvm-svn: 280051
I'm working on a lower-level intrusive list that can be used
stand-alone, and splitting the files up a bit will make the code easier
to organize. Explode the ilist headers in advance to improve blame
lists in the future.
- Move ilist_node_base from ilist_node.h to ilist_node_base.h.
- Move ilist_base from ilist.h to ilist_base.h.
- Move ilist_iterator from ilist.h to ilist_iterator.h.
- Move ilist_node_access from ilist.h to ilist_node.h to support
ilist_iterator.
- Update unit tests to #include smaller headers.
- Clang-format the moved things.
I noticed in transit that there is a simplify_type specialization for
ilist_iterator. Since there is no longer an implicit conversion from
ilist<T>::iterator to T*, this doesn't make sense (effectively it's a
form of implicit conversion). For now I've added a FIXME.
llvm-svn: 280047
And rename the tests inside from ilistTest to IListTest. This makes the
file sort properly in the CMakeLists.txt (previously, sorting would
throw it down to the end of the list) and is consistent with the tests
I've added more recently.
Why use IListNodeBaseTest.cpp (and a test name of IListNodeBaseTest)?
- ilist_node_base_test is the obvious thing, since this is testing
ilist_node_base. However, gtest disallows underscores in test names.
- ilist_node_baseTest fails for the same reason.
- ilistNodeBaseTest is weird, because it isn't in our usual
TitleCaseTest form that we use for tests, and it also doesn't have the
name of the tested class in it.
- IlistNodeBaseTest matches TitleCaseTest, but "Ilist" is hard to read,
and really "ilist" is an abbreviation for "IntrusiveList" so the
lowercase "list" is strange.
- That left IListNodeBaseTest.
Note: I made this move in two stages, with a temporary filename of
ilistTestTemp in between in r279524. This was in the hopes of avoiding
problems on Git and SVN clients on case-insensitive filesystems,
particularly on buildbots with incremental checkouts.
llvm-svn: 280033
Reverse iterators to doubly-linked lists can be simpler (and cheaper)
than std::reverse_iterator. Make it so.
In particular, change ilist<T>::reverse_iterator so that it is *never*
invalidated unless the node it references is deleted. This matches the
guarantees of ilist<T>::iterator.
(Note: MachineBasicBlock::iterator is *not* an ilist iterator, but a
MachineInstrBundleIterator<MachineInstr>. This commit does not change
MachineBasicBlock::reverse_iterator, but it does update
MachineBasicBlock::reverse_instr_iterator. See note at end of commit
message for details on bundle iterators.)
Given the list (with the Sentinel showing twice for simplicity):
[Sentinel] <-> A <-> B <-> [Sentinel]
the following is now true:
1. begin() represents A.
2. begin() holds the pointer for A.
3. end() represents [Sentinel].
4. end() holds the poitner for [Sentinel].
5. rbegin() represents B.
6. rbegin() holds the pointer for B.
7. rend() represents [Sentinel].
8. rend() holds the pointer for [Sentinel].
The changes are #6 and #8. Here are some properties from the old
scheme (which used std::reverse_iterator):
- rbegin() held the pointer for [Sentinel] and rend() held the pointer
for A;
- operator*() cost two dereferences instead of one;
- converting from a valid iterator to its valid reverse_iterator
involved a confusing increment; and
- "RI++->erase()" left RI invalid. The unintuitive replacement was
"RI->erase(), RE = end()".
With vector-like data structures these properties are hard to avoid
(since past-the-beginning is not a valid pointer), and don't impose a
real cost (since there's still only one dereference, and all iterators
are invalidated on erase). But with lists, this was a poor design.
Specifically, the following code (which obviously works with normal
iterators) now works with ilist::reverse_iterator as well:
for (auto RI = L.rbegin(), RE = L.rend(); RI != RE;)
fooThatMightRemoveArgFromList(*RI++);
Converting between iterator and reverse_iterator for the same node uses
the getReverse() function.
reverse_iterator iterator::getReverse();
iterator reverse_iterator::getReverse();
Why doesn't iterator <=> reverse_iterator conversion use constructors?
In order to catch and update old code, reverse_iterator does not even
have an explicit conversion from iterator. It wouldn't be safe because
there would be no reasonable way to catch all the bugs from the changed
semantic (see the changes at call sites that are part of this patch).
Old code used this API:
std::reverse_iterator::reverse_iterator(iterator);
iterator std::reverse_iterator::base();
Here's how to update from old code to new (that incorporates the
semantic change), assuming I is an ilist<>::iterator and RI is an
ilist<>::reverse_iterator:
[Old] ==> [New]
reverse_iterator(I) (--I).getReverse()
reverse_iterator(I) ++I.getReverse()
--reverse_iterator(I) I.getReverse()
reverse_iterator(++I) I.getReverse()
RI.base() (--RI).getReverse()
RI.base() ++RI.getReverse()
--RI.base() RI.getReverse()
(++RI).base() RI.getReverse()
delete &*RI, RE = end() delete &*RI++
RI->erase(), RE = end() RI++->erase()
=======================================
Note: bundle iterators are out of scope
=======================================
MachineBasicBlock::iterator, also known as
MachineInstrBundleIterator<MachineInstr>, is a wrapper to represent
MachineInstr bundles. The idea is that each operator++ takes you to the
beginning of the next bundle. Implementing a sane reverse iterator for
this is harder than ilist. Here are the options:
- Use std::reverse_iterator<MBB::i>. Store a handle to the beginning of
the next bundle. A call to operator*() runs a loop (usually
operator--() will be called 1 time, for unbundled instructions).
Increment/decrement just works. This is the status quo.
- Store a handle to the final node in the bundle. A call to operator*()
still runs a loop, but it iterates one time fewer (usually
operator--() will be called 0 times, for unbundled instructions).
Increment/decrement just works.
- Make the ilist_sentinel<MachineInstr> *always* store that it's the
sentinel (instead of just in asserts mode). Then the bundle iterator
can sniff the sentinel bit in operator++().
I initially tried implementing the end() option as part of this commit,
but updating iterator/reverse_iterator conversion call sites was
error-prone. I have a WIP series of patches that implements the final
option.
llvm-svn: 280032
Optional.
For void functions the return type of a nonblocking call changes from
Expected<future<Optional<bool>>> to Expected<future<Error>>, and for functions
returning T the return type changes from Expected<future<Optional<T>>> to
Expected<future<Expected<T>>>.
Inner results need to be checked (since the RPC connection may have dropped
out before a result came back) and Error/Expected provide stronger checking
requirements. It also allows us drop the crufty 'optionalToError' function and
just collapse Errors in the single-threaded call primitives.
llvm-svn: 280016
Instead of putting all possible requests into a single table, we can perform
the extremely dense lookup based on opcode and type-index in constant time
using multi-dimensional array-like things.
This roughly halves the time spent doing legalization, which was dominated by
queries against the Actions table.
llvm-svn: 280011
Summary: No functional changes, just refactoring to make D23947 simpler.
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23954
llvm-svn: 279982
switch to using one indirect stub manager per logical dylib rather than one per
input module.
LogicalDylib is a helper class used by the CompileOnDemandLayer to manage
symbol resolution between modules during lazy compilation. In particular, it
ensures that internal symbols resolve correctly even in the case where multiple
input modules contain the same internal symbol name (which must to be promoted
to external hidden linkage so that functions in any given module can be split
out by lazy compilation). LogicalDylib's resolution scheme (before this commit)
required one stub-manager per input module. This made recompilation of functions
(by adding a module containing a new definition) difficult, as the stub manager
for any given symbol was bound to the module that supplied the original
definition. By using one stubs manager for the whole logical dylib symbols can
be more easily replaced, although support for doing this is not included in this
patch (it will be implemented in a follow up).
llvm-svn: 279952
The InitializerList test had undefined behavior by creating a dangling pointer to the temporary initializer list. This patch removes the undefined behavior in the test by creating the initializer list directly.
Reviewers: mehdi_amini, dblaikie
Differential Revision: https://reviews.llvm.org/D23890
llvm-svn: 279783