When dsymutil generates the companion file, its strips all unnecessary
sections by omitting their body and setting the offset in their
corresponding load command to zero.
One such section is the .eh_frame section, as it contains runtime
information rather than debug information and is part of the __TEXT
segment. When reading this section, we would just read the number of
bytes specified in the load command, starting from offset 0 (i.e. the
beginning of the file).
Rather than trying to parse this obviously invalid section, dwarfdump
now skips this.
Differential revision: https://reviews.llvm.org/D38135
llvm-svn: 314208
The XOP rotations act as ROTL with +ve values and ROTR with -ve values, which means that we can treat them all as ROTL with unsigned modulo. We already check that we're only trying to lower as ROTL for XOP rotations.
Differential Revision: https://reviews.llvm.org/D37949
llvm-svn: 314207
This is a 2nd attempt at:
https://reviews.llvm.org/rL310055
...which was reverted at rL310123 because of PR34074:
https://bugs.llvm.org/show_bug.cgi?id=34074
In this version, we break out of the inner loop after we successfully merge and kill a pair of stores. In the
earlier rev, we were continuing instead, which meant we could process the invalid info from a now dead store.
Original commit message (authored by Filipe Cabecinhas):
This fixes PR31777.
If both stores' values are ConstantInt, we merge the two stores
(shifting the smaller store appropriately) and replace the earlier (and
larger) store with an updated constant.
In the future we should also support vectors of integers. And maybe
float/double if we can.
Differential Revision: https://reviews.llvm.org/D30703
llvm-svn: 314206
This patch adds logic to follow a symbol's aliases when the symbol name
cannot be found in the current object file. It checks the main binary
for the symbol's address and queries the current object for its aliases
(symbols with the same address) before printing out a warning.
Differential revision: https://reviews.llvm.org/D38230
llvm-svn: 314198
Removing X86 broadcast(f/i)32x2 intrinsics from llvm.
Adding autoUpgrade support.
Moving matching tests from avx512dq-intrinsics.ll to avx512dq-intrinsics-upgrade.ll and from avx512dqvl-intrinsics.ll to avx512dqvl-intrinsics-upgrade.ll.
Differential Revision: https://reviews.llvm.org/D38220
llvm-svn: 314195
Usually the frontend communicates the size of wchar_t via metadata and
we can optimize wcslen (and possibly other calls in the future). In
cases without the wchar_size metadata we would previously try to guess
the correct size based on the target triple; however this is fragile to
keep up to date and may miss users manually changing the size via flags.
Better be safe and stop guessing and optimizing if the frontend didn't
communicate the size.
Differential Revision: https://reviews.llvm.org/D38106
llvm-svn: 314185
This was an oversight in the original backend data layout.
The AVR architecture does not have the concept of unaligned loads - all
loads/stores from all addresses are aligned to one byte.
Discovered in avr-rust issue #64https://github.com/avr-rust/rust/issues/64
Patch By Gergo Erdi.
llvm-svn: 314179
llvm-cov's report mode does not print any output when -show-functions is
specified and no source files are specified. This can be surprising, so
the tool should at least print out an error message when this happens.
rdar://problem/34636859
llvm-svn: 314175
Summary:
Sanitizer blacklist entries currently apply to all sanitizers--there
is no way to specify that an entry should only apply to a specific
sanitizer. This is important for Control Flow Integrity since there are
several different CFI modes that can be enabled at once. For maximum
security, CFI blacklist entries should be scoped to only the specific
CFI mode(s) that entry applies to.
Adding section headers to SpecialCaseLists allows users to specify more
information about list entries, like sanitizer names or other metadata,
like so:
[section1]
fun:*fun1*
[section2|section3]
fun:*fun23*
The section headers are regular expressions. For backwards compatbility,
blacklist entries entered before a section header are put into the '[*]'
section so that blacklists without sections retain the same behavior.
SpecialCaseList has been modified to also accept a section name when
matching against the blacklist. It has also been modified so the
follow-up change to clang can define a derived class that allows
matching sections by SectionMask instead of by string.
Reviewers: pcc, kcc, eugenis, vsk
Reviewed By: eugenis, vsk
Subscribers: vitalybuka, llvm-commits
Differential Revision: https://reviews.llvm.org/D37924
llvm-svn: 314170
It leads to some improvements, but also a regression for the simple
case, so it's not clearly a good idea.
test/CodeGen/ARM/vcvt.ll now has test coverage to show the difference.
Ultimately, the right solution is probably to custom-lower fp-to-int
conversions, to something like ARMISD::VCVT_F32_S32 plus a bitcast.
It's hard to do the right thing when the implicit bitcast isn't visible
to DAG transforms.
llvm-svn: 314169
R12 is used for the SwiftError parameter. It is no longer a CSR as it
is used for transfer the SwiftError, and the caller must preserve it if
they need to.
llvm-svn: 314165
All this optimization cares about is knowing how many low bits of LHS is known to be zero and whether that means that the result is 0 or greater than the RHS constant. It doesn't matter where the zeros in the low bits came from. So we don't need to specifically look for an AND. Instead we can use known bits.
Differential Revision: https://reviews.llvm.org/D38195
llvm-svn: 314153
As far as I know SUBREG_TO_REG is stating that the upper bits are 0. But if we are just converting the GR32 with no checks, then we have no reason to say the upper bits are 0.
I don't really know how to test this today since I can't find anything that looks that closely at SUBREG_TO_REG. The test changes here seems to be some perturbance of register allocation.
Differential Revision: https://reviews.llvm.org/D38001
llvm-svn: 314152
This change refactors some of the code to allow for some code
deduplication in later diffs as well as just to make adding a new
section type more self contained to the class itself. The idea for this
was first mentioned by James in D 37915 and will be used in that change
as recommended.
This change follows changes for dynamic sections but precedes support
for dynamic relocations.
Differential Revision: https://reviews.llvm.org/D38008
llvm-svn: 314148
The 1st attempt at this:
https://reviews.llvm.org/rL314117
was reverted at:
https://reviews.llvm.org/rL314118
because of bot fails for clang tests that were checking optimized IR. That should be fixed with:
https://reviews.llvm.org/rL314144
...so try again.
Original commit message:
The transform to convert an extract-of-a-select-of-vectors was added at:
https://reviews.llvm.org/rL194013
And a question about the validity of this transform was raised in the review:
https://reviews.llvm.org/D1539:
...but not answered AFAICT>
Most of the motivating cases in that patch are now handled by other combines. These are the tests that were added with
the original commit, but they are not regressing even after we remove the transform in this patch.
The diffs we see after removing this transform cause us to avoid increasing the instruction count, so we don't want to do
those transforms as canonicalizations.
The motivation for not turning a vector-select-of-vectors into a scalar operation is shown in PR33301:
https://bugs.llvm.org/show_bug.cgi?id=33301
...in those cases, we'll get vector ops with this patch rather than the vector/scalar mix that we currently see.
Differential Revision: https://reviews.llvm.org/D38006
llvm-svn: 314147
This teach simplifyDemandedBits to handle constant splat vector shifts.
This required changing some uses of getZExtValue to getLimitedValue since we can't rely on legalization using getShiftAmountTy for the shift amount.
I believe there may have been a bug in the ((X << C1) >>u ShAmt) handling where we didn't check if the inner shift was too large. I've fixed that here.
I had to add new patterns to ARM because the zext/sext the patterns were trying to look for got turned into an any_extend with this patch. Happy to split that out too, but not sure how to test without this change.
Differential Revision: https://reviews.llvm.org/D37665
llvm-svn: 314139
Add two callbacks to MachineEvaluator, so that specific implementations
can specify more details about register classes:
- composeWithSubRegIndex(RC,Idx), to provide the register class for a
register from RC used in conjunction with a subregister index Idx.
- getPhysRegBitWidth(Reg), to provide the size in bits of the given
physical register.
llvm-svn: 314136
This replaces the large number of patterns that handle every possible case of zeroing after a masked compare with a few simpler patterns that use a predicate to check for a masked compare producer.
This is similar to what we do for detecting free GR32->GR64 zero extends and free xmm->ymm/zmm zero extends.
This shrinks the isel table from ~590k to ~531k. This is a roughly 10% reduction in size.
Differential Revision: https://reviews.llvm.org/D38217
llvm-svn: 314133
Since now SCEV can handle 'urem', an 'urem' is a better canonical form than an 'srem' because it has well-defined behavior
This is a follow up of D34598
Differential Revision: https://reviews.llvm.org/D38072
llvm-svn: 314125