1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
Commit Graph

17 Commits

Author SHA1 Message Date
Mehdi Amini
9ff867f98c [NFC] Header cleanup
Removed some unused headers, replaced some headers with forward class declarations.

Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'

Patch by Eugene Kosov <claprix@yandex.ru>

Differential Revision: http://reviews.llvm.org/D19219

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
2016-04-18 09:17:29 +00:00
Tobias Grosser
de0082bcae SCEV: Allow simple AddRec * Parameter products in delinearization
This patch also allows the -delinearize pass to delinearize expressions that do
not have an outermost SCEVAddRec expression. The SCEV::delinearize
infrastructure allowed this since r240952, but the -delinearize pass was not
updated yet.

llvm-svn: 250018
2015-10-12 08:02:00 +00:00
Chandler Carruth
4d1e1851a4 [PM] Port ScalarEvolution to the new pass manager.
This change makes ScalarEvolution a stand-alone object and just produces
one from a pass as needed. Making this work well requires making the
object movable, using references instead of overwritten pointers in
a number of places, and other refactorings.

I've also wired it up to the new pass manager and added a RUN line to
a test to exercise it under the new pass manager. This includes basic
printing support much like with other analyses.

But there is a big and somewhat scary change here. Prior to this patch
ScalarEvolution was never *actually* invalidated!!! Re-running the pass
just re-wired up the various other analyses and didn't remove any of the
existing entries in the SCEV caches or clear out anything at all. This
might seem OK as everything in SCEV that can uses ValueHandles to track
updates to the values that serve as SCEV keys. However, this still means
that as we ran SCEV over each function in the module, we kept
accumulating more and more SCEVs into the cache. At the end, we would
have a SCEV cache with every value that we ever needed a SCEV for in the
entire module!!! Yowzers. The releaseMemory routine would dump all of
this, but that isn't realy called during normal runs of the pipeline as
far as I can see.

To make matters worse, there *is* actually a key that we don't update
with value handles -- there is a map keyed off of Loop*s. Because
LoopInfo *does* release its memory from run to run, it is entirely
possible to run SCEV over one function, then over another function, and
then lookup a Loop* from the second function but find an entry inserted
for the first function! Ouch.

To make matters still worse, there are plenty of updates that *don't*
trip a value handle. It seems incredibly unlikely that today GVN or
another pass that invalidates SCEV can update values in *just* such
a way that a subsequent run of SCEV will incorrectly find lookups in
a cache, but it is theoretically possible and would be a nightmare to
debug.

With this refactoring, I've fixed all this by actually destroying and
recreating the ScalarEvolution object from run to run. Technically, this
could increase the amount of malloc traffic we see, but then again it is
also technically correct. ;] I don't actually think we're suffering from
tons of malloc traffic from SCEV because if we were, the fact that we
never clear the memory would seem more likely to have come up as an
actual problem before now. So, I've made the simple fix here. If in fact
there are serious issues with too much allocation and deallocation,
I can work on a clever fix that preserves the allocations (while
clearing the data) between each run, but I'd prefer to do that kind of
optimization with a test case / benchmark that shows why we need such
cleverness (and that can test that we actually make it faster). It's
possible that this will make some things faster by making the SCEV
caches have higher locality (due to being significantly smaller) so
until there is a clear benchmark, I think the simple change is best.

Differential Revision: http://reviews.llvm.org/D12063

llvm-svn: 245193
2015-08-17 02:08:17 +00:00
Tobias Grosser
ce9ed925b6 Move delinearization from SCEVAddRecExpr to ScalarEvolution
The expressions we delinearize do not necessarily have to have a SCEVAddRecExpr
at the outermost level. At this moment, the additional flexibility  is not
exploited in LLVM itself, but in Polly we will soon soonish use this
functionality. For LLVM, this change should not affect existing functionality
(which is covered by test/Analysis/Delinearization/)

llvm-svn: 240952
2015-06-29 14:42:48 +00:00
Chandler Carruth
c47432114d [PM] Split the LoopInfo object apart from the legacy pass, creating
a LoopInfoWrapperPass to wire the object up to the legacy pass manager.

This switches all the clients of LoopInfo over and paves the way to port
LoopInfo to the new pass manager. No functionality change is intended
with this iteration.

llvm-svn: 226373
2015-01-17 14:16:18 +00:00
Sebastian Pop
721b704445 remove BasePointer before delinearizing
No functional change is intended: instead of relying on the delinearization to
come up with the base pointer as a remainder of the divisions in the
delinearization, we just compute it from the array access and use that value.
We substract the base pointer from the SCEV to be delinearized and that
simplifies the work of the delinearizer.

llvm-svn: 209692
2014-05-27 22:41:51 +00:00
Sebastian Pop
1664c3c2ec remove constant terms
The delinearization is needed only to remove the non linearity induced by
expressions involving multiplications of parameters and induction variables.
There is no problem in dealing with constant times parameters, or constant times
an induction variable.

For this reason, the current patch discards all constant terms and multipliers
before running the delinearization algorithm on the terms. The only thing
remaining in the term expressions are parameters and multiply expressions of
parameters: these simplified term expressions are passed to the array shape
recognizer that will not recognize constant dimensions anymore: these will be
recognized as different strides in parametric subscripts.

The only important special case of a constant dimension is the size of elements.
Instead of relying on the delinearization to infer the size of an element,
compute the element size from the base address type. This is a much more precise
way of computing the element size than before, as we would have mixed together
the size of an element with the strides of the innermost dimension.

llvm-svn: 209691
2014-05-27 22:41:45 +00:00
Sebastian Pop
d5cb815565 split delinearization pass in 3 steps
To compute the dimensions of the array in a unique way, we split the
delinearization analysis in three steps:

- find parametric terms in all memory access functions
- compute the array dimensions from the set of terms
- compute the delinearized access functions for each dimension

The first step is executed on all the memory access functions such that we
gather all the patterns in which an array is accessed. The second step reduces
all this information in a unique description of the sizes of the array. The
third step is delinearizing each memory access function following the common
description of the shape of the array computed in step 2.

This rewrite of the delinearization pass also solves a problem we had with the
previous implementation: because the previous algorithm was by induction on the
structure of the SCEV, it would not correctly recognize the shape of the array
when the memory access was not following the nesting of the loops: for example,
see polly/test/ScopInfo/multidim_only_ivs_3d_reverse.ll

; void foo(long n, long m, long o, double A[n][m][o]) {
;
;   for (long i = 0; i < n; i++)
;     for (long j = 0; j < m; j++)
;       for (long k = 0; k < o; k++)
;         A[i][k][j] = 1.0;

Starting with this patch we no longer delinearize access functions that do not
contain parameters, for example in test/Analysis/DependenceAnalysis/GCD.ll

;;  for (long int i = 0; i < 100; i++)
;;    for (long int j = 0; j < 100; j++) {
;;      A[2*i - 4*j] = i;
;;      *B++ = A[6*i + 8*j];

these accesses will not be delinearized as the upper bound of the loops are
constants, and their access functions do not contain SCEVUnknown parameters.

llvm-svn: 208232
2014-05-07 18:01:20 +00:00
Chandler Carruth
7b7b0c3523 [Modules] Fix potential ODR violations by sinking the DEBUG_TYPE
definition below all the header #include lines, lib/Analysis/...
edition.

This one has a bit extra as there were *other* #define's before #include
lines in addition to DEBUG_TYPE. I've sunk all of them as a block.

llvm-svn: 206843
2014-04-22 02:48:03 +00:00
Craig Topper
8cd194d4c1 [C++11] More 'nullptr' conversion. In some cases just using a boolean check instead of comparing to nullptr.
llvm-svn: 206243
2014-04-15 04:59:12 +00:00
Tobias Grosser
6903994d2b Delinearize: Extend informationin -analyze output
llvm-svn: 205838
2014-04-09 07:53:49 +00:00
Craig Topper
4c58d1a8e2 [C++11] Add 'override' keyword to virtual methods that override their base class.
llvm-svn: 202945
2014-03-05 07:30:04 +00:00
Chandler Carruth
d7b36fdea7 [Modules] Move InstIterator out of the Support library, where it had no
business.

This header includes Function and BasicBlock and directly uses the
interfaces of both classes. It has to do with the IR, it even has that
in the name. =] Put it in the library it belongs to.

This is one step toward making LLVM's Support library survive a C++
modules bootstrap.

llvm-svn: 202814
2014-03-04 10:30:26 +00:00
Chandler Carruth
87f14b4eec Re-sort all of the includes with ./utils/sort_includes.py so that
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.

Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.

llvm-svn: 198685
2014-01-07 11:48:04 +00:00
Sebastian Pop
2aa0f76304 add more comments around the delinearization of arrays
llvm-svn: 194612
2013-11-13 22:37:58 +00:00
Benjamin Kramer
24e9924c2b Move Delinearization pass into an anonymous namespace.
llvm-svn: 194582
2013-11-13 15:35:17 +00:00
Sebastian Pop
c8eb6dbd80 delinearization of arrays
llvm-svn: 194527
2013-11-12 22:47:20 +00:00