The logic that sets up lit features for sanitizers is largely copied
between here and clang, except clang's was fixed some time ago to
handle multiple sanitizers (ie, Asan + Ubsan). This just makes the
code in LLVM consistent with how it's done in clang to avoid any
gotchas by users of this.
llvm-svn: 270510
to llvm-objdump. This section is created with -fembed-bitcode option.
This requires the use of libxar and the Cmake and lit support were crafted by
Chris Bieneman!
rdar://26202242
llvm-svn: 270491
This adds llvm-pdbdump to the list of tools which get printed with
the full path in verbose mode. This makes it easier to take the
whole run line from verbose output and run it again without prepending
with the builds bin directory.
llvm-svn: 268250
We missed a handful of .mir tests that existed outside the
test/CodeGen/MIR directory.
Also fix the three powerpc .mir tests that nobody noticed were broken.
llvm-svn: 265350
This is part of a new statistics gathering feature for the sanitizers.
See clang/docs/SanitizerStats.rst for further info and docs.
Differential Revision: http://reviews.llvm.org/D16174
llvm-svn: 257970
LLVM_ENABLE_TIMESTAMPS controls if timestamps are embedded into llvm's
binaries. Turning it off is useful for deterministic builds.
r246905 made it so that the define suddenly also controls if the binaries that
the llvm binaries _create_ embed timestamps or not – but this shouldn't be a
configure-time option. r256203/r256204 added a driver option to toggle this on
and off, so this patch now passes this driver option in LLVM_ENABLE_TIMESTAMPS
builds so that if LLVM_ENABLE_TIMESTAMPS is set, the build of LLVM is
deterministic – but the built clang can still write timestamps into other
executables when requested.
This also allows removing some of the test machinery added in r292012 to work
around this problem.
See PR24740 for background.
http://reviews.llvm.org/D15783
llvm-svn: 256958
Support for COFF timestamps was unintentionally broken in r246905 when
it was conditionally available depending on whether or not LLVM was
configured with LLVM_ENABLE_TIMESTAMPS. However, Config/config.h was
never included which essentially broke the feature. Due to lax testing,
the breakage was never identified until we observed strange failures
during incremental links of Chromium.
This issue is resolved by simply including Config/config.h in
WinCOFFObjectWriter and teaching lit that the MC/COFF/timestamp.s test
is conditionally supported depending on LLVM_ENABLE_TIMESTAMPS. With
this in place, we can strengthen the test to ensure that it will not
accidentally get broken in the future.
This fixes PR25891.
llvm-svn: 256137
Summary:
When running tests, pass the GO_EXECUTABLE CMake
cache variable to llvm-go. The "go" binary may
not be in $PATH, or may be different to the one
passed to CMake.
Reviewers: pcc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14041
llvm-svn: 254187
When building LLVM as a (potentially dynamic) library that can be linked against
by multiple compilers, the default triple is not really meaningful.
We allow to explicitely set it to an empty string when configuring LLVM.
In this case, said "target independent" tests in the test suite that are using
the default triple are disabled by matching the newly available feature
"default_triple".
Reviewers: probinson, echristo
Differential Revision: http://reviews.llvm.org/D12660
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 247775
Every time lit is invoked, I get warnings like so:
lit.py: lit.cfg:286: note: Did not find llvm-go in /Users/bogner/build/llvm/./bin
lit.py: lit.cfg:286: note: Did not find Kaleidoscope-Ch3 in /Users/bogner/build/llvm/./bin
Since these tools are only built in certain configs, these warnings
are superfluous. Change it so that we only warn about tools that are
built in all configs.
llvm-svn: 246684
Summary:
If run with other locales (like French),
the decode operation might fail
Reviewers: rafael
Differential Revision: http://reviews.llvm.org/D12432
llvm-svn: 246421
The module splitter splits a module into linkable partitions. It will
be used to implement parallel LTO code generation.
This initial version of the splitter does not attempt to deal with the
somewhat subtle symbol visibility issues around module splitting. These
will be dealt with in a future change.
Differential Revision: http://reviews.llvm.org/D12132
llvm-svn: 245662
llvm-lib is intended to be a lib.exe compatible utility that also
understands bitcode. The implementation lives in a library so that
lld can use it to implement /lib.
Differential Revision: http://reviews.llvm.org/D10297
llvm-svn: 239434
These changes allow usages where you want to pass an additional
commandline option to all invocations of a specific llvm tool. Example:
> llvm-lit -Dllc=llc -enable-misched -verify-machineinstrs
Differential Revision: http://reviews.llvm.org/D9487
llvm-svn: 236461
This works in a similar way to the gold plugin tests. We search for a compatible
linker on $PATH and use it to run tests against our just-built libLTO. To start
with, test the just added opt level functionality.
Differential Revision: http://reviews.llvm.org/D8472
llvm-svn: 232785
a gold binary explicitly. Substitute this binary into the tests rather
than just directly executing the 'ld' binary.
This should allow folks to inject a cross compiling gold binary, or in
my case to use a gold binary built and installed somewhere other than
/usr/bin/ld. It should also allow the tests to find 'ld.gold' so that
things work even if gold isn't the default on the system.
I've only stubbed out support in the makefile to preserve the existing
behavior with none of the fancy logic. If someone else wants to add
logic here, they're welcome to do so.
llvm-svn: 229251
This preserves the handy functionality of force-enabling the MachineVerifier, without the need to embed usage of environment variables in LLVM client applications.
llvm-svn: 228079
The goal of this tool is to replicate Darwin's dsymutil functionality
based on LLVM. dsymutil is a DWARF linker. Darwin's linker (ld64) does
not link the debug information, it leaves it in the object files in
relocatable form, but embbeds a `debug map` into the executable that
describes where to find the debug information and how to relocate it.
When releasing/archiving a binary, dsymutil is called to link all the DWARF
information into a `dsym bundle` that can distributed/stored along with
the binary.
With this commit, the LLVM based dsymutil is just able to parse the STABS
debug maps embedded by ld64 in linked binaries (and not all of them, for
example archives aren't supported yet).
Note that the tool directory is called dsymutil, but the executable is
currently called llvm-dsymutil. This discrepancy will disappear once the
tool will be feature complete. At this point the executable will be renamed
to dsymutil, but until then you do not want it to override the system one.
Differential Revision: http://reviews.llvm.org/D6242
llvm-svn: 224134