1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00
Commit Graph

11 Commits

Author SHA1 Message Date
Simon Pilgrim
e9e77991e4 [Pass] Ensure we don't include PassSupport.h or PassAnalysisSupport.h directly
Both PassSupport.h and PassAnalysisSupport.h are only supposed to be included via Pass.h.

Differential Revision: https://reviews.llvm.org/D78815
2020-04-26 12:58:20 +01:00
Alina Sbirlea
3fc1696aca [AliasAnalysis] Second prototype to cache BasicAA / anyAA state.
Summary:
Adding contained caching to AliasAnalysis. BasicAA is currently the only one using it.

AA changes:
- This patch is pulling the caches from BasicAAResults to AAResults, meaning the getModRefInfo call benefits from the IsCapturedCache as well when in "batch mode".
- All AAResultBase implementations add the QueryInfo member to all APIs. AAResults APIs maintain wrapper APIs such that all alias()/getModRefInfo call sites are unchanged.
- AA now provides a BatchAAResults type as a wrapper to AAResults. It keeps the AAResults instance and a QueryInfo instantiated to batch mode. It delegates all work to the AAResults instance with the batched QueryInfo. More API wrappers may be needed in BatchAAResults; only the minimum needed is currently added.

MemorySSA changes:
- All walkers are now templated on the AA used (AliasAnalysis=AAResults or BatchAAResults).
- At build time, we optimize uses; now we create a local walker (lives only as long as OptimizeUses does) using BatchAAResults.
- All Walkers have an internal AA and only use that now, never the AA in MemorySSA. The Walkers receive the AA they will use when built.

- The walker we use for queries after the build is instantiated on AliasAnalysis and is built after building MemorySSA and setting AA.
- All static methods doing walking are now templated on AliasAnalysisType if they are used both during build and after. If used only during build, the method now only takes a BatchAAResults. If used only after build, the method now takes an AliasAnalysis.

Subscribers: sanjoy, arsenm, jvesely, nhaehnle, jlebar, george.burgess.iv, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D59315

llvm-svn: 356783
2019-03-22 17:22:19 +00:00
Chandler Carruth
ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00
Chandler Carruth
cb1f5addb7 [CallSite removal] Migrate all Alias Analysis APIs to use the newly
minted `CallBase` class instead of the `CallSite` wrapper.

This moves the largest interwoven collection of APIs that traffic in
`CallSite`s. While a handful of these could have been migrated with
a minorly more shallow migration by converting from a `CallSite` to
a `CallBase`, it hardly seemed worth it. Most of the APIs needed to
migrate together because of the complex interplay of AA APIs and the
fact that converting from a `CallBase` to a `CallSite` isn't free in its
current implementation.

Out of tree users of these APIs can fairly reliably migrate with some
combination of `.getInstruction()` on the `CallSite` instance and
casting the resulting pointer. The most generic form will look like `CS`
-> `cast_or_null<CallBase>(CS.getInstruction())` but in most cases there
is a more elegant migration. Hopefully, this migrates enough APIs for
users to fully move from `CallSite` to the base class. All of the
in-tree users were easily migrated in that fashion.

Thanks for the review from Saleem!

Differential Revision: https://reviews.llvm.org/D55641

llvm-svn: 350503
2019-01-07 05:42:51 +00:00
Alina Sbirlea
0e9a4ac953 [ModRefInfo] Make enum ModRefInfo an enum class [NFC].
Summary:
Make enum ModRefInfo an enum class. Changes to ModRefInfo values should
be done using inline wrappers.
This should prevent future bit-wise opearations from being added, which can be more error-prone.

Reviewers: sanjoy, dberlin, hfinkel, george.burgess.iv

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D40933

llvm-svn: 320107
2017-12-07 22:41:34 +00:00
Sean Silva
11e71061b1 Consistently use FunctionAnalysisManager
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.

Thanks to David for the suggestion.

llvm-svn: 278077
2016-08-09 00:28:15 +00:00
Chandler Carruth
6150530377 [PM] Make the AnalysisManager parameter to run methods a reference.
This was originally a pointer to support pass managers which didn't use
AnalysisManagers. However, that doesn't realistically come up much and
the complexity of supporting it doesn't really make sense.

In fact, *many* parts of the pass manager were just assuming the pointer
was never null already. This at least makes it much more explicit and
clear.

llvm-svn: 263219
2016-03-11 11:05:24 +00:00
Chandler Carruth
e597ed0112 [AA] Hoist the logic to reformulate various AA queries in terms of other
parts of the AA interface out of the base class of every single AA
result object.

Because this logic reformulates the query in terms of some other aspect
of the API, it would easily cause O(n^2) query patterns in alias
analysis. These could in turn be magnified further based on the number
of call arguments, and then further based on the number of AA queries
made for a particular call. This ended up causing problems for Rust that
were actually noticable enough to get a bug (PR26564) and probably other
places as well.

When originally re-working the AA infrastructure, the desire was to
regularize the pattern of refinement without losing any generality.
While I think it was successful, that is clearly proving to be too
costly. And the cost is needless: we gain no actual improvement for this
generality of making a direct query to tbaa actually be able to
re-use some other alias analysis's refinement logic for one of the other
APIs, or some such. In short, this is entirely wasted work.

To the extent possible, delegation to other API surfaces should be done
at the aggregation layer so that we can avoid re-walking the
aggregation. In fact, this significantly simplifies the logic as we no
longer need to smuggle the aggregation layer into each alias analysis
(or the TargetLibraryInfo into each alias analysis just so we can form
argument memory locations!).

However, we also have some delegation logic inside of BasicAA and some
of it even makes sense. When the delegation logic is baking in specific
knowledge of aliasing properties of the LLVM IR, as opposed to simply
reformulating the query to utilize a different alias analysis interface
entry point, it makes a lot of sense to restrict that logic to
a different layer such as BasicAA. So one aspect of the delegation that
was in every AA base class is that when we don't have operand bundles,
we re-use function AA results as a fallback for callsite alias results.
This relies on the IR properties of calls and functions w.r.t. aliasing,
and so seems a better fit to BasicAA. I've lifted the logic up to that
point where it seems to be a natural fit. This still does a bit of
redundant work (we query function attributes twice, once via the
callsite and once via the function AA query) but it is *exactly* twice
here, no more.

The end result is that all of the delegation logic is hoisted out of the
base class and into either the aggregation layer when it is a pure
retargeting to a different API surface, or into BasicAA when it relies
on the IR's aliasing properties. This should fix the quadratic query
pattern reported in PR26564, although I don't have a stand-alone test
case to reproduce it.

It also seems general goodness. Now the numerous AAs that don't need
target library info don't carry it around and depend on it. I think
I can even rip out the general access to the aggregation layer and only
expose that in BasicAA as it is the only place where we re-query in that
manner.

However, this is a non-trivial change to the AA infrastructure so I want
to get some additional eyes on this before it lands. Sadly, it can't
wait long because we should really cherry pick this into 3.8 if we're
going to go this route.

Differential Revision: http://reviews.llvm.org/D17329

llvm-svn: 262490
2016-03-02 15:56:53 +00:00
Chandler Carruth
a25189ea0f [PM] Introduce CRTP mixin base classes to help define passes and
analyses in the new pass manager.

These just handle really basic stuff: turning a type name into a string
statically that is nice to print in logs, and getting a static unique ID
for each analysis.

Sadly, the format of passes in anonymous namespaces makes using their
names in tests really annoying so I've customized the names of the no-op
passes to keep tests sane to read.

This is the first of a few simplifying refactorings for the new pass
manager that should reduce boilerplate and confusion.

llvm-svn: 262004
2016-02-26 11:44:45 +00:00
Chandler Carruth
d7003090ac [PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible
with the new pass manager, and no longer relying on analysis groups.

This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:

- FunctionAAResults is a type-erasing alias analysis results aggregation
  interface to walk a single query across a range of results from
  different alias analyses. Currently this is function-specific as we
  always assume that aliasing queries are *within* a function.

- AAResultBase is a CRTP utility providing stub implementations of
  various parts of the alias analysis result concept, notably in several
  cases in terms of other more general parts of the interface. This can
  be used to implement only a narrow part of the interface rather than
  the entire interface. This isn't really ideal, this logic should be
  hoisted into FunctionAAResults as currently it will cause
  a significant amount of redundant work, but it faithfully models the
  behavior of the prior infrastructure.

- All the alias analysis passes are ported to be wrapper passes for the
  legacy PM and new-style analysis passes for the new PM with a shared
  result object. In some cases (most notably CFL), this is an extremely
  naive approach that we should revisit when we can specialize for the
  new pass manager.

- BasicAA has been restructured to reflect that it is much more
  fundamentally a function analysis because it uses dominator trees and
  loop info that need to be constructed for each function.

All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.

The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.

This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.

Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.

One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.

Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.

Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.

Differential Revision: http://reviews.llvm.org/D12080

llvm-svn: 247167
2015-09-09 17:55:00 +00:00
Chandler Carruth
e93d4cc138 [ARC] Pull the ObjC ARC components that really serve the role of
analyses into LLVM's Analysis library rather than having them in
a Transforms library.

This is motivated by the need to have the core AliasAnalysis
infrastructure be aware of the ObjCARCAliasAnalysis. However, it also
seems like a nice and clean separation. Everything was very easy to move
and this doesn't create much clutter in the analysis library IMO.

Differential Revision: http://reviews.llvm.org/D12133

llvm-svn: 245541
2015-08-20 08:06:03 +00:00