1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 03:02:36 +01:00
Commit Graph

493 Commits

Author SHA1 Message Date
Jakob Stoklund Olesen
1c034ce174 Minimize precision loss when computing cyclic probabilities.
Allow block frequencies to exceed 32 bits by using the new
BlockFrequency division function.

llvm-svn: 185236
2013-06-28 22:40:43 +00:00
Preston Briggs
9a4e6f6c73 (no commit message)
llvm-svn: 185187
2013-06-28 18:44:48 +00:00
Nadav Rotem
311bda941c CostModel: improve the cost model for load/store of non power-of-two types such as <3 x float>, which are popular in graphics.
llvm-svn: 185085
2013-06-27 17:52:04 +00:00
Jakob Stoklund Olesen
a4ca837638 Print block frequencies in decimal form.
This is easier to read than the internal fixed-point representation.

If anybody knows the correct algorithm for converting fixed-point
numbers to base 10, feel free to fix it.

llvm-svn: 184881
2013-06-25 21:57:38 +00:00
Arnold Schwaighofer
730386bc34 X86 cost model: Vectorizing integer division is a bad idea
radar://14057959

llvm-svn: 184872
2013-06-25 19:14:09 +00:00
Benjamin Kramer
3b56c8dd50 BlockFrequency: Bump up the entry frequency a bit.
This is a band-aid to fix the most severe regressions we're seeing from basing
spill decisions on block frequencies, until we have a better solution.

llvm-svn: 184835
2013-06-25 13:34:40 +00:00
Benjamin Kramer
30c35d5305 Revert "BlockFrequency: Saturate at 1 instead of 0 when multiplying a frequency with a branch probability."
This reverts commit r184584. Breaks PPC selfhost.

llvm-svn: 184590
2013-06-21 20:20:27 +00:00
Benjamin Kramer
3315e168ee BlockFrequency: Saturate at 1 instead of 0 when multiplying a frequency with a branch probability.
Zero is used by BlockFrequencyInfo as a special "don't know" value. It also
causes a sink for frequencies as you can't ever get off a zero frequency with
more multiplies.

This recovers a 10% regression on MultiSource/Benchmarks/7zip. A zero frequency
was propagated into an inner loop causing excessive spilling.

PR16402.

llvm-svn: 184584
2013-06-21 19:30:05 +00:00
Andrew Trick
c470f27448 Unit test for SCEV fix r182989, PR16130.
llvm-svn: 183017
2013-05-31 16:42:41 +00:00
Michael Kuperstein
ad5bd9ce5a Make BasicAliasAnalysis recognize the fact a noalias argument cannot alias another argument, even if the other argument is not itself marked noalias.
llvm-svn: 182755
2013-05-28 08:17:48 +00:00
Diego Novillo
d1f091f169 Add a new function attribute 'cold' to functions.
Other than recognizing the attribute, the patch does little else.
It changes the branch probability analyzer so that edges into
blocks postdominated by a cold function are given low weight.

Added analysis and code generation tests.  Added documentation for the
new attribute.

llvm-svn: 182638
2013-05-24 12:26:52 +00:00
Tim Northover
eb518c7918 AArch64: use MCJIT by default and enable related tests.
This just enables some testing I'd missed after implementing MCJIT
support.

llvm-svn: 181215
2013-05-06 16:51:08 +00:00
Matt Arsenault
34e1805cd0 Fix unchecked uses of DominatorTree in MemoryDependenceAnalysis.
Use unknown results for places where it would be needed

llvm-svn: 181176
2013-05-06 02:07:24 +00:00
Tobias Grosser
fb2da25967 RegionInfo: Do not crash if unreachable block is found
llvm-svn: 181025
2013-05-03 15:48:34 +00:00
Manman Ren
13b2364d24 TBAA: remove !tbaa from testing cases if not used.
This will make it easier to turn on struct-path aware TBAA since the metadata
format will change.

llvm-svn: 180743
2013-04-29 22:42:01 +00:00
Manman Ren
c576d690b0 Struct-path aware TBAA: change the format of TBAAStructType node.
We switch the order of offset and field type to make TBAAStructType node
(name, parent node, offset) similar to scalar TBAA node (name, parent node).
TypeIsImmutable is added to TBAAStructTag node.

llvm-svn: 180654
2013-04-27 00:26:11 +00:00
Arnold Schwaighofer
b1fc314b5f ARM cost model: Integer div and rem is lowered to a function call
Reflect this in the cost model. I observed this in MiBench/consumer-lame.

radar://13354716

llvm-svn: 180576
2013-04-25 21:16:18 +00:00
Jim Grosbach
3104dcf2ca Legalize vector truncates by parts rather than just splitting.
Rather than just splitting the input type and hoping for the best, apply
a bit more cleverness. Just splitting the types until the source is
legal often leads to an illegal result time, which is then widened and a
scalarization step is introduced which leads to truly horrible code
generation. With the loop vectorizer, these sorts of operations are much
more common, and so it's worth extra effort to do them well.

Add a legalization hook for the operands of a TRUNCATE node, which will
be encountered after the result type has been legalized, but if the
operand type is still illegal. If simple splitting of both types
ends up with the result type of each half still being legal, just
do that (v16i16 -> v16i8 on ARM, for example). If, however, that would
result in an illegal result type (v8i32 -> v8i8 on ARM, for example),
we can get more clever with power-two vectors. Specifically,
split the input type, but also widen the result element size, then
concatenate the halves and truncate again.  For example on ARM,
To perform a "%res = v8i8 trunc v8i32 %in" we transform to:
  %inlo = v4i32 extract_subvector %in, 0
  %inhi = v4i32 extract_subvector %in, 4
  %lo16 = v4i16 trunc v4i32 %inlo
  %hi16 = v4i16 trunc v4i32 %inhi
  %in16 = v8i16 concat_vectors v4i16 %lo16, v4i16 %hi16
  %res = v8i8 trunc v8i16 %in16

This allows instruction selection to generate three VMOVN instructions
instead of a sequences of moves, stores and loads.

Update the ARMTargetTransformInfo to take this improved legalization
into account.

Consider the simplified IR:

define <16 x i8> @test1(<16 x i32>* %ap) {
  %a = load <16 x i32>* %ap
  %tmp = trunc <16 x i32> %a to <16 x i8>
  ret <16 x i8> %tmp
}

define <8 x i8> @test2(<8 x i32>* %ap) {
  %a = load <8 x i32>* %ap
  %tmp = trunc <8 x i32> %a to <8 x i8>
  ret <8 x i8> %tmp
}

Previously, we would generate the truly hideous:
	.syntax unified
	.section	__TEXT,__text,regular,pure_instructions
	.globl	_test1
	.align	2
_test1:                                 @ @test1
@ BB#0:
	push	{r7}
	mov	r7, sp
	sub	sp, sp, #20
	bic	sp, sp, #7
	add	r1, r0, #48
	add	r2, r0, #32
	vld1.64	{d24, d25}, [r0:128]
	vld1.64	{d16, d17}, [r1:128]
	vld1.64	{d18, d19}, [r2:128]
	add	r1, r0, #16
	vmovn.i32	d22, q8
	vld1.64	{d16, d17}, [r1:128]
	vmovn.i32	d20, q9
	vmovn.i32	d18, q12
	vmov.u16	r0, d22[3]
	strb	r0, [sp, #15]
	vmov.u16	r0, d22[2]
	strb	r0, [sp, #14]
	vmov.u16	r0, d22[1]
	strb	r0, [sp, #13]
	vmov.u16	r0, d22[0]
	vmovn.i32	d16, q8
	strb	r0, [sp, #12]
	vmov.u16	r0, d20[3]
	strb	r0, [sp, #11]
	vmov.u16	r0, d20[2]
	strb	r0, [sp, #10]
	vmov.u16	r0, d20[1]
	strb	r0, [sp, #9]
	vmov.u16	r0, d20[0]
	strb	r0, [sp, #8]
	vmov.u16	r0, d18[3]
	strb	r0, [sp, #3]
	vmov.u16	r0, d18[2]
	strb	r0, [sp, #2]
	vmov.u16	r0, d18[1]
	strb	r0, [sp, #1]
	vmov.u16	r0, d18[0]
	strb	r0, [sp]
	vmov.u16	r0, d16[3]
	strb	r0, [sp, #7]
	vmov.u16	r0, d16[2]
	strb	r0, [sp, #6]
	vmov.u16	r0, d16[1]
	strb	r0, [sp, #5]
	vmov.u16	r0, d16[0]
	strb	r0, [sp, #4]
	vldmia	sp, {d16, d17}
	vmov	r0, r1, d16
	vmov	r2, r3, d17
	mov	sp, r7
	pop	{r7}
	bx	lr

	.globl	_test2
	.align	2
_test2:                                 @ @test2
@ BB#0:
	push	{r7}
	mov	r7, sp
	sub	sp, sp, #12
	bic	sp, sp, #7
	vld1.64	{d16, d17}, [r0:128]
	add	r0, r0, #16
	vld1.64	{d20, d21}, [r0:128]
	vmovn.i32	d18, q8
	vmov.u16	r0, d18[3]
	vmovn.i32	d16, q10
	strb	r0, [sp, #3]
	vmov.u16	r0, d18[2]
	strb	r0, [sp, #2]
	vmov.u16	r0, d18[1]
	strb	r0, [sp, #1]
	vmov.u16	r0, d18[0]
	strb	r0, [sp]
	vmov.u16	r0, d16[3]
	strb	r0, [sp, #7]
	vmov.u16	r0, d16[2]
	strb	r0, [sp, #6]
	vmov.u16	r0, d16[1]
	strb	r0, [sp, #5]
	vmov.u16	r0, d16[0]
	strb	r0, [sp, #4]
	ldm	sp, {r0, r1}
	mov	sp, r7
	pop	{r7}
	bx	lr

Now, however, we generate the much more straightforward:
	.syntax unified
	.section	__TEXT,__text,regular,pure_instructions
	.globl	_test1
	.align	2
_test1:                                 @ @test1
@ BB#0:
	add	r1, r0, #48
	add	r2, r0, #32
	vld1.64	{d20, d21}, [r0:128]
	vld1.64	{d16, d17}, [r1:128]
	add	r1, r0, #16
	vld1.64	{d18, d19}, [r2:128]
	vld1.64	{d22, d23}, [r1:128]
	vmovn.i32	d17, q8
	vmovn.i32	d16, q9
	vmovn.i32	d18, q10
	vmovn.i32	d19, q11
	vmovn.i16	d17, q8
	vmovn.i16	d16, q9
	vmov	r0, r1, d16
	vmov	r2, r3, d17
	bx	lr

	.globl	_test2
	.align	2
_test2:                                 @ @test2
@ BB#0:
	vld1.64	{d16, d17}, [r0:128]
	add	r0, r0, #16
	vld1.64	{d18, d19}, [r0:128]
	vmovn.i32	d16, q8
	vmovn.i32	d17, q9
	vmovn.i16	d16, q8
	vmov	r0, r1, d16
	bx	lr

llvm-svn: 179989
2013-04-21 23:47:41 +00:00
Arnold Schwaighofer
e1dc8ae8c8 X86 cost model: Exit before calling getSimpleVT on non-simple VTs
getSimpleVT can only handle simple value types.

radar://13676022

llvm-svn: 179714
2013-04-17 20:04:53 +00:00
Nadav Rotem
06ab05f47a CostModel: increase the default cost of supported floating point operations from 1 to two. Fixed a few tests that changes because now the cost of one insert + a vector operation on two doubles is lower than two scalar operations on doubles.
llvm-svn: 179413
2013-04-12 21:15:03 +00:00
Manman Ren
6a0ccf041c Aliasing rules for struct-path aware TBAA.
Added PathAliases to check if two struct-path tags can alias.
Added command line option -struct-path-tbaa.

llvm-svn: 179337
2013-04-11 23:24:18 +00:00
Arnold Schwaighofer
3218da2403 X86 cost model: Model cost for uitofp and sitofp on SSE2
The costs are overfitted so that I can still use the legalization factor.

For example the following kernel has about half the throughput vectorized than
unvectorized when compiled with SSE2. Before this patch we would vectorize it.

unsigned short A[1024];
double B[1024];
void f() {
  int i;
  for (i = 0; i < 1024; ++i) {
    B[i] = (double) A[i];
  }
}

radar://13599001

llvm-svn: 179033
2013-04-08 18:05:48 +00:00
Arnold Schwaighofer
16848bcf4a TargetLowering: Fix getTypeConversion handling of extended vector types
The code in getTypeConversion attempts to promote the element vector type
before it trys to split or widen the vector.
After it failed finding a legal vector type by promoting it would continue using
the promoted vector element type. Thereby missing legal splitted vector types.
For example the type v32i32 that has a legal split of 4 x v3i32 on x86/sse2
would be transformed to: v32i256 and from there on successively split to:
v16i256, v8i256, v1i256 and then finally ends up as an i64 type.
By resetting the vector element type to the original vector element type that
existed before the promotion the code will attempt to split the vector type to
smaller vector widths of the same type.

llvm-svn: 178999
2013-04-07 20:22:56 +00:00
Arnold Schwaighofer
52871434dd X86 cost model: Differentiate cost for vector shifts of constants
SSE2 has efficient support for shifts by a scalar. My previous change of making
shifts expensive did not take this into account marking all shifts as expensive.
This would prevent vectorization from happening where it is actually beneficial.

With this change we differentiate between shifts of constants and other shifts.

radar://13576547

llvm-svn: 178808
2013-04-04 23:26:24 +00:00
Arnold Schwaighofer
329430aeac X86 cost model: Vector shifts are expensive in most cases
The default logic does not correctly identify costs of casts because they are
marked as custom on x86.

For some cases, where the shift amount is a scalar we would be able to generate
better code. Unfortunately, when this is the case the value (the splat) will get
hoisted out of the loop, thereby making it invisible to ISel.

radar://13130673
radar://13537826

llvm-svn: 178703
2013-04-03 21:46:05 +00:00
Benjamin Kramer
7634eefc37 X86TTI: Add accurate costs for itofp operations, based on the actual instruction counts.
llvm-svn: 178459
2013-04-01 10:23:49 +00:00
Andrew Trick
57ddfcf201 Fix SCEV forgetMemoizedResults should search and destroy backedge exprs.
Fixes PR15570: SEGV: SCEV back-edge info invalid after dead code removal.

Indvars creates a SCEV expression for the loop's back edge taken
count, then determines that the comparison is always true and
removes it.

When loop-unroll asks for the expression, it contains a NULL
SCEVUnknkown (as a CallbackVH).

forgetMemoizedResults should invalidate the loop back edges expression.

llvm-svn: 177986
2013-03-26 03:14:53 +00:00
Jyotsna Verma
5d3a002f82 Disable profiling tests for Hexagon since it doesn't support JIT.
llvm-svn: 177917
2013-03-25 21:15:11 +00:00
Manman Ren
6e08f09d69 Support in AAEvaluator to print alias queries of loads/stores with TBAA tags.
Add "evaluate-tbaa" to print alias queries of loads/stores. Alias queries
between pointers do not include TBAA tags.

Add testing case for "placement new". TBAA currently says NoAlias.

llvm-svn: 177772
2013-03-22 22:34:41 +00:00
Michael Liao
fe785c9579 Correct cost model for vector shift on AVX2
- After moving logic recognizing vector shift with scalar amount from
  DAG combining into DAG lowering, we declare to customize all vector
  shifts even vector shift on AVX is legal. As a result, the cost model
  needs special tuning to identify these legal cases.

llvm-svn: 177586
2013-03-20 22:01:10 +00:00
Nadav Rotem
317ff20b46 Optimize sext <4 x i8> and <4 x i16> to <4 x i64>.
Patch by Ahmad, Muhammad T <muhammad.t.ahmad@intel.com>

llvm-svn: 177421
2013-03-19 18:38:27 +00:00
Renato Golin
6d0295565e Improve long vector sext/zext lowering on ARM
The ARM backend currently has poor codegen for long sext/zext
operations, such as v8i8 -> v8i32. This patch addresses this
by performing a custom expansion in ARMISelLowering. It also
adds/changes the cost of such lowering in ARMTTI.

This partially addresses PR14867.

Patch by Pete Couperus

llvm-svn: 177380
2013-03-19 08:15:38 +00:00
Arnold Schwaighofer
0b9d14a046 ARM cost model: Make some vector integer to float casts cheaper
The default logic marks them as too expensive.

For example, before this patch we estimated:
  cost of 16 for instruction:   %r = uitofp <4 x i16> %v0 to <4 x float>

While this translates to:
  vmovl.u16 q8, d16
  vcvt.f32.u32  q8, q8

All other costs are left to the values assigned by the fallback logic. Theses
costs are mostly reasonable in the sense that they get progressively more
expensive as the instruction sequences emitted get longer.

radar://13445992

llvm-svn: 177334
2013-03-18 22:47:09 +00:00
Arnold Schwaighofer
e628d03dcc ARM cost model: Correct cost for some cheap float to integer conversions
Fix cost of some "cheap" cast instructions. Before this patch we used to
estimate for example:
  cost of 16 for instruction:   %r = fptoui <4 x float> %v0 to <4 x i16>

While we would emit:
  vcvt.s32.f32  q8, q8
  vmovn.i32 d16, q8
  vuzp.8  d16, d17

All other costs are left to the values assigned by the fallback logic. Theses
costs are mostly reasonable in the sense that they get progressively more
expensive as the instruction sequences emitted get longer.

radar://13434072

llvm-svn: 177333
2013-03-18 22:47:06 +00:00
Arnold Schwaighofer
c83f5b493e ARM cost model: Fix costs for some vector selects
I was too pessimistic in r177105. Vector selects that fit into a legal register
type lower just fine. I was mislead by the code fragment that I was using. The
stores/loads that I saw in those cases came from lowering the conditional off
an address.

Changing the code fragment to:

%T0_3 = type <8 x i18>
%T1_3 = type <8 x i1>

define void @func_blend3(%T0_3* %loadaddr, %T0_3* %loadaddr2,
                         %T1_3* %blend, %T0_3* %storeaddr) {
  %v0 = load %T0_3* %loadaddr
  %v1 = load %T0_3* %loadaddr2
==> FROM:
  ;%c = load %T1_3* %blend
==> TO:
  %c = icmp slt %T0_3 %v0, %v1
==> USE:
  %r = select %T1_3 %c, %T0_3 %v0, %T0_3 %v1

  store %T0_3 %r, %T0_3* %storeaddr
  ret void
}

revealed this mistake.

radar://13403975

llvm-svn: 177170
2013-03-15 18:31:01 +00:00
Arnold Schwaighofer
77e4a47e9b ARM cost model: Fix cost of fptrunc and fpext instructions
A vector fptrunc and fpext simply gets split into scalar instructions.

radar://13192358

llvm-svn: 177159
2013-03-15 15:10:47 +00:00
Arnold Schwaighofer
63a59d3be8 ARM cost model: Increase cost of some vector selects we do terrible on
By terrible I mean we store/load from the stack.

This matters on PAQp8 in _Z5trainPsS_ii (which is inlined into Mixer::update)
where we decide to vectorize a loop with a VF of 8 resulting in a 25%
degradation on a cortex-a8.

LV: Found an estimated cost of 2 for VF 8 For instruction:   icmp slt i32
LV: Found an estimated cost of 2 for VF 8 For instruction:   select i1, i32, i32

The bug that tracks the CodeGen part is PR14868.

radar://13403975

llvm-svn: 177105
2013-03-14 19:17:02 +00:00
Arnold Schwaighofer
416d47b476 ARM cost model: Increase the cost for vector casts that use the stack
Increase the cost of v8/v16-i8 to v8/v16-i32 casts and truncates as the backend
currently lowers those using stack accesses.

This was responsible for a significant degradation on
MultiSource/Benchmarks/Trimaran/enc-pc1/enc-pc1
where we vectorize one loop to a vector factor of 16. After this patch we select
a vector factor of 4 which will generate reasonable code.

unsigned char cle[32];

void test(short c) {
  unsigned short compte;
  for (compte = 0; compte <= 31; compte++) {
    cle[compte] = cle[compte] ^ c;
  }
}

radar://13220512

llvm-svn: 176898
2013-03-12 21:19:22 +00:00
Jan Wen Voung
74d9647d18 Revert the test moves from 176733. Use "REQUIRES: asserts" instead.
llvm-svn: 176873
2013-03-12 16:27:52 +00:00
Jan Wen Voung
2346df4d41 Disable statistics on Release builds and move tests that depend on -stats.
Summary:
Statistics are still available in Release+Asserts (any +Asserts builds),
and stats can also be turned on with LLVM_ENABLE_STATS.

Move some of the FastISel stats that were moved under DEBUG()
back out of DEBUG(), since stats are disabled across the board now.

Many tests depend on grepping "-stats" output.  Move those into
a orig_dir/Stats/. so that they can be marked as unsupported
when building without statistics.

Differential Revision: http://llvm-reviews.chandlerc.com/D486

llvm-svn: 176733
2013-03-08 22:56:31 +00:00
Shuxin Yang
048b100cc5 Memory Dependence Analysis (not mem-dep test) take advantage of "invariant.load" metadata.
The "invariant.load" metadata indicates the memory unit being accessed is immutable.
A load annotated with this metadata can be moved across any store.

As I am not sure if it is legal to move such loads across barrier/fence, this
change dose not allow such transformation.

rdar://11311484

Thank Arnold for code review.

llvm-svn: 176562
2013-03-06 17:48:48 +00:00
Arnold Schwaighofer
e60e6fc70f X86 cost model: Adjust cost for custom lowered vector multiplies
This matters for example in following matrix multiply:

int **mmult(int rows, int cols, int **m1, int **m2, int **m3) {
  int i, j, k, val;
  for (i=0; i<rows; i++) {
    for (j=0; j<cols; j++) {
      val = 0;
      for (k=0; k<cols; k++) {
        val += m1[i][k] * m2[k][j];
      }
      m3[i][j] = val;
    }
  }
  return(m3);
}

Taken from the test-suite benchmark Shootout.

We estimate the cost of the multiply to be 2 while we generate 9 instructions
for it and end up being quite a bit slower than the scalar version (48% on my
machine).

Also, properly differentiate between avx1 and avx2. On avx-1 we still split the
vector into 2 128bits and handle the subvector muls like above with 9
instructions.
Only on avx-2 will we have a cost of 9 for v4i64.

I changed the test case in test/Transforms/LoopVectorize/X86/avx1.ll to use an
add instead of a mul because with a mul we now no longer vectorize. I did
verify that the mul would be indeed more expensive when vectorized with 3
kernels:

for (i ...)
   r += a[i] * 3;
for (i ...)
  m1[i] = m1[i] * 3; // This matches the test case in avx1.ll
and a matrix multiply.

In each case the vectorized version was considerably slower.

radar://13304919

llvm-svn: 176403
2013-03-02 04:02:52 +00:00
Benjamin Kramer
df474e5dfa Cost model support for lowered math builtins.
We make the cost for calling libm functions extremely high as emitting the
calls is expensive and causes spills (on x86) so performance suffers. We still
vectorize important calls like ceilf and friends on SSE4.1. and fabs.

Differential Revision: http://llvm-reviews.chandlerc.com/D466

llvm-svn: 176287
2013-02-28 19:09:33 +00:00
Bill Wendling
db672f1bc8 Use references to attribute groups on the call/invoke instructions.
Listing all of the attributes for the callee of a call/invoke instruction is way
too much and makes the IR unreadable. Use references to attributes instead.

llvm-svn: 175877
2013-02-22 09:09:42 +00:00
Elena Demikhovsky
0886fb4d55 I optimized the following patterns:
sext <4 x i1> to <4 x i64>
 sext <4 x i8> to <4 x i64>
 sext <4 x i16> to <4 x i64>
 
I'm running Combine on SIGN_EXTEND_IN_REG and revert SEXT patterns:
 (sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) -> (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
 
 The sext_in_reg (v4i32 x) may be lowered to shl+sar operations.
 The "sar" does not exist on 64-bit operation, so lowering sext_in_reg (v4i64 x) has no vector solution.

I also added a cost of this operations to the AVX costs table.

llvm-svn: 175619
2013-02-20 12:42:54 +00:00
Bill Wendling
74351693ea Modify the LLVM assembly output so that it uses references to represent function attributes.
This makes the LLVM assembly look better. E.g.:

     define void @foo() #0 { ret void }
     attributes #0 = { nounwind noinline ssp }

llvm-svn: 175605
2013-02-20 07:21:42 +00:00
Tim Northover
6d736b1227 AArch64: adjust tests which rely on a default JIT
Profiling tests *do* need a JIT. They'll pass if a cross-compiler targetting
AArch64 by default has been built, but fail if a native AArch64 compiler has
been build. Therefore XFAIL is inappropriate and we mark them unsupported.

ExecutionEngine tests are JIT by definition, they should also be unsupported.

Transforms/LICM only uses the interpreter to check the output is still sane
after optimisation. It can be switched to use an interpreter.

llvm-svn: 175433
2013-02-18 11:08:37 +00:00
Arnold Schwaighofer
b7dd0ff204 ARM cost model: Add vector reverse shuffle costs
A reverse shuffle is lowered to a vrev and possibly a vext instruction (quad
word).

radar://13171406

llvm-svn: 174933
2013-02-12 02:40:39 +00:00
Bill Schmidt
53ad58d77a Refine fix to bug 15041.
Thanks to help from Nadav and Hal, I have a more reasonable (and even
correct!) approach.  This specifically penalizes the insertelement
and extractelement operations for the performance hit that will occur
on PowerPC processors.

llvm-svn: 174725
2013-02-08 18:19:17 +00:00
Arnold Schwaighofer
381c4a3e54 ARM cost model: Address computation in vector mem ops not free
Adds a function to target transform info to query for the cost of address
computation. The cost model analysis pass now also queries this interface.
The code in LoopVectorize adds the cost of address computation as part of the
memory instruction cost calculation. Only there, we know whether the instruction
will be scalarized or not.
Increase the penality for inserting in to D registers on swift. This becomes
necessary because we now always assume that address computation has a cost and
three is a closer value to the architecture.

radar://13097204

llvm-svn: 174713
2013-02-08 14:50:48 +00:00