This basically involved removing references to llvm.eh.exception,
llvm.eh.selector, and llvm.eh.resume and replacing them with references to the
landingpad and resume instructions.
llvm-svn: 140128
transformed by the inliner into a branch to the enclosing landing pad
(when inlined through an invoke). If not so optimized, it is lowered
DWARF EH preparation into a call to _Unwind_Resume (or _Unwind_SjLj_Resume
as appropriate). Its chief advantage is that it takes both the
exception value and the selector value as arguments, meaning that there
is zero effort in recovering these; however, the frontend is required
to pass these down, which is not actually particularly difficult.
Also document the behavior of landing pads a bit better, and make it
clearer that it's okay that personality functions don't always land at
landing pads. This is just a fact of life. Don't write optimizations that
rely on pushing things over an unwind edge.
llvm-svn: 132253
<h2>Section Example</h2>
<div> <!-- h2+div is applied -->
<p>Section preamble.</p>
<h3>Subsection Example</h3>
<p> <!-- h3+p is applied -->
Subsection body
</p>
<!-- End of section body -->
</div>
FIXME: Care H5 better.
llvm-svn: 130040
NOTE: 2nd part changeset for cfe trunk to follow.
*** PRE-PATCH ISSUES ADDRESSED
- clang api docs fail build from objdir
- clang/llvm api docs collide in install PREFIX/
- clang/llvm main docs collide in install
- clang/llvm main docs have full of hard coded destination
assumptions and make use of absolute root in static html files;
namely CommandGuide tools hard codes a website destination
for cross references and some html cross references assume
website root paths
*** IMPROVEMENTS
- bumped Doxygen from 1.4.x -> 1.6.3
- splits llvm/clang docs into 'main' and 'api' (doxygen) build trees
- provide consistent, reliable doc builds for both main+api docs
- support buid vs. install vs. website intentions
- support objdir builds
- document targets with 'make help'
- correct clean and uninstall operations
- use recursive dir delete only where absolutely necessary
- added call function fn.RMRF which safeguards against botched 'rm -rf';
if any target (or any variable is evaluated) which attempts
to remove any dirs which match a hard-coded 'safelist', a verbose
error will be printed and make will error-stop.
llvm-svn: 103213
This allows code gen and the exception table writer to cooperate to make sure
landing pads are associated with the correct invoke locations.
llvm-svn: 94726
so get rid of eh.selector.i64 and rename eh.selector.i32 to eh.selector.
Likewise for eh.typeid.for. This aligns us with gcc, which always uses a
32 bit value for the selector on all platforms. My understanding is that
the register allocator used to assert if the selector intrinsic size didn't
match the pointer size, and this was the reason for introducing the two
variants. However my testing shows that this is no longer the case (I
fixed some bugs in selector lowering yesterday, and some more today in the
fastisel path; these might have caused the original problems).
llvm-svn: 84106
and short. Well, it's kinda short. Definitely nasty and brutish.
The front-end generates the register/unregister calls into the SjLj runtime,
call-site indices and landing pad dispatch. The back end fills in the LSDA
with the call-site information provided by the front end. Catch blocks are
not yet implemented.
Built on Darwin and verified no llvm-core "make check" regressions.
llvm-svn: 78625
llvm.eh.sjlj.* for better clarity as to their purpose and scope. Add
a description of llvm.eh.sjlj.setjmp to ExceptionHandling.html.
(llvm.eh.sjlj.longjmp documentation coming when that implementation is
added).
llvm-svn: 71758
gcc exception handling: if an exception unwinds through
an invoke, then execution must branch to the invoke's
unwind target. We previously tried to enforce this by
appending a cleanup action to every selector, however
this does not always work correctly due to an optimization
in the C++ unwinding runtime: if only cleanups would be
run while unwinding an exception, then the program just
terminates without actually executing the cleanups, as
invoke semantics would require. I was hoping this
wouldn't be a problem, but in fact it turns out to be the
cause of all the remaining failures in the LLVM testsuite
(these also fail with -enable-correct-eh-support, so turning
on -enable-eh didn't make things worse!). Instead we need
to append a full-blown catch-all to the end of each
selector. The correct way of doing this depends on the
personality function, i.e. it is language dependent, so
can only be done by gcc. Thus this patch which generalizes
the eh.selector intrinsic so that it can handle all possible
kinds of action table entries (before it didn't accomodate
cleanups): now 0 indicates a cleanup, and filters have to be
specified using the number of type infos plus one rather than
the number of type infos. Related gcc patches will cause
Ada to pass a cleanup (0) to force the selector to always
fire, while C++ will use a C++ catch-all (null).
llvm-svn: 41484