Previously, when linking against libcmt from the MSVC runtime,
lld-link /verbose would show "Ignoring unknown symbol record
with kind 0x1006". It turns out this was because
TypeIndexDiscovery did not handle S_REGISTER records, so these
records were not getting properly remapped.
Patch by: Alexnadre Ganea
Differential Revision: https://reviews.llvm.org/D40919
llvm-svn: 320108
Summary:
Make enum ModRefInfo an enum class. Changes to ModRefInfo values should
be done using inline wrappers.
This should prevent future bit-wise opearations from being added, which can be more error-prone.
Reviewers: sanjoy, dberlin, hfinkel, george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40933
llvm-svn: 320107
Summary:
This did not work because the ExpectedHolder was trying to hold the
value in an Optional<T*>. Instead of trying to mimic the behavior of
Expected and try to make ExpectedHolder work with references and
non-references, I simply store the reference to the Expected object in
the holder.
I also add a bunch of tests for these matchers, which have helped me
flesh out some problems in my initial implementation of this patch, and
uncovered the fact that we are not consistent in quoting our values in
the matcher output (which I also fix).
Reviewers: zturner, chandlerc
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D40904
llvm-svn: 320025
This extends r319391. It teaches the segment builder to emit the right
completed segment when more than one region ends at the same location.
Fixes PR35495.
llvm-svn: 319990
Currently nothing uses this, but this at least gets the core
algorithm in, and adds some test to demonstrate correctness.
Differential Revision: https://reviews.llvm.org/D40736
llvm-svn: 319854
We currently use target_link_libraries without an explicit scope
specifier (INTERFACE, PRIVATE or PUBLIC) when linking executables.
Dependencies added in this way apply to both the target and its
dependencies, i.e. they become part of the executable's link interface
and are transitive.
Transitive dependencies generally don't make sense for executables,
since you wouldn't normally be linking against an executable. This also
causes issues for generating install export files when using
LLVM_DISTRIBUTION_COMPONENTS. For example, clang has a lot of LLVM
library dependencies, which are currently added as interface
dependencies. If clang is in the distribution components but the LLVM
libraries it depends on aren't (which is a perfectly legitimate use case
if the LLVM libraries are being built static and there are therefore no
run-time dependencies on them), CMake will complain about the LLVM
libraries not being in export set when attempting to generate the
install export file for clang. This is reasonable behavior on CMake's
part, and the right thing is for LLVM's build system to explicitly use
PRIVATE dependencies for executables.
Unfortunately, CMake doesn't allow you to mix and match the keyword and
non-keyword target_link_libraries signatures for a single target; i.e.,
if a single call to target_link_libraries for a particular target uses
one of the INTERFACE, PRIVATE, or PUBLIC keywords, all other calls must
also be updated to use those keywords. This means we must do this change
in a single shot. I also fully expect to have missed some instances; I
tested by enabling all the projects in the monorepo (except dragonegg),
and configuring both with and without shared libraries, on both Darwin
and Linux, but I'm planning to rely on the buildbots for other
configurations (since it should be pretty easy to fix those).
Even after this change, we still have a lot of target_link_libraries
calls that don't specify a scope keyword, mostly for shared libraries.
I'm thinking about addressing those in a follow-up, but that's a
separate change IMO.
Differential Revision: https://reviews.llvm.org/D40823
llvm-svn: 319840
comparison of symbol names.
SymbolStringPool is a thread-safe string pool that will be used in upcoming Orc
APIs to facilitate efficient storage and fast comparison of symbol name strings.
llvm-svn: 319839
Previously ConstantRange::makeGuaranteedNoWrapRegion only handled addition. This adds support for subtraction.
Differential Revision: https://reviews.llvm.org/D40036
llvm-svn: 319806
This is for PR35460.
Currently when LLD adds files to TarWriter it may pass the same file
multiple times. For example it happens for clang reproduce file which specifies
archive (.a) files more than once in command line.
Patch makes TarWriter to ignore files with the same path, so it will
add only the first one to archive.
Differential revision: https://reviews.llvm.org/D40606
llvm-svn: 319750
This is a fix for the coverage segment builder.
If multiple regions must be popped off the active stack at once, and
more than one of them end at the same location, emit a segment using the
count from the most-recent completed region.
Fixes PR35437, rdar://35760630
Testing: invoked llvm-cov on a stage2 build of clang, additional unit
tests, check-profile
llvm-svn: 319391
The motivation behind this patch is that future directions require us to
be able to compute the hash value of records independently of actually
using them for de-duplication.
The current structure of TypeSerializer / TypeTableBuilder being a
single entry point that takes an unserialized type record, and then
hashes and de-duplicates it is not flexible enough to allow this.
At the same time, the existing TypeSerializer is already extremely
complex for this very reason -- it tries to be too many things. In
addition to serializing, hashing, and de-duplicating, ti also supports
splitting up field list records and adding continuations. All of this
functionality crammed into this one class makes it very complicated to
work with and hard to maintain.
To solve all of these problems, I've re-written everything from scratch
and split the functionality into separate pieces that can easily be
reused. The end result is that one class TypeSerializer is turned into 3
new classes SimpleTypeSerializer, ContinuationRecordBuilder, and
TypeTableBuilder, each of which in isolation is simple and
straightforward.
A quick summary of these new classes and their responsibilities are:
- SimpleTypeSerializer : Turns a non-FieldList leaf type into a series of
bytes. Does not do any hashing. Every time you call it, it will
re-serialize and return bytes again. The same instance can be re-used
over and over to avoid re-allocations, and in exchange for this
optimization the bytes returned by the serializer only live until the
caller attempts to serialize a new record.
- ContinuationRecordBuilder : Turns a FieldList-like record into a series
of fragments. Does not do any hashing. Like SimpleTypeSerializer,
returns references to privately owned bytes, so the storage is
invalidated as soon as the caller tries to re-use the instance. Works
equally well for LF_FIELDLIST as it does for LF_METHODLIST, solving a
long-standing theoretical limitation of the previous implementation.
- TypeTableBuilder : Accepts sequences of bytes that the user has already
serialized, and inserts them by de-duplicating with a hash table. For
the sake of convenience and efficiency, this class internally stores a
SimpleTypeSerializer so that it can accept unserialized records. The
same is not true of ContinuationRecordBuilder. The user is required to
create their own instance of ContinuationRecordBuilder.
Differential Revision: https://reviews.llvm.org/D40518
llvm-svn: 319198
Prevent unloading shared libraries on Linux when dlclose() is called.
This is necessary since command-line option parsing API relies on
registering the global option instances in the option parser instance
which can be loaded in a different shared library.
Given that we can't reliably remove those options when a library is
unloaded, the parser ends up containing dangling references. Since glibc
has relatively complex library unloading rules, some of the LLVM
libraries can be unloaded while others (including the Support library)
stay loaded causing quite a mayhem. To reliably prevent that, just
forbid unloading all libraries -- it's a very bad idea anyway.
While the issue arguably happens only with BUILD_SHARED_LIBS, it may
affect any library reusing llvm::cl interface.
Based on patch provided Ross Hayward on https://bugs.gentoo.org/617154.
Previously hit by Fedora back in Feb 2016:
https://lists.freedesktop.org/archives/mesa-dev/2016-February/107242.html
Differential Revision: https://reviews.llvm.org/D40459
llvm-svn: 319105
The previous implementation would only look 1 DW_AT_specification or DW_AT_abstract_origin deep. This means DWARFDie::getName() would fail in certain cases. I ran into such a case while creating a tool that used the LLVM DWARF parser to generate a symbolication format so I have seen this in the wild.
Differential Revision: https://reviews.llvm.org/D40156
llvm-svn: 319104
The existing library assumed that a stream's length would never
change. This makes some things simpler, but it's not flexible
enough for what we need, especially for writable streams where
what you really want is for each call to write to actually append.
llvm-svn: 319070
We already allowed keep+discard. It is important to be able to discard
a temporary if a rename fail. It is also convenient as it allows the
use of RAII for discarding.
Allow discarding twice for similar reasons.
llvm-svn: 318867
This adds support for ADL in the range based <algorithm> extensions
(llvm::for_each etc.).
Also adds the helper functions llvm::adl::begin and llvm::adl::end which wrap
std::begin and std::end with ADL support.
Saw this was missing from a recent llvm weekly post about adding llvm::for_each
and thought I might add it.
Patch by Stephen Dollberg!
Differential Revision: https://reviews.llvm.org/D40006
llvm-svn: 318703
We were not doing that for large shadow granularity. Also add more
stack frame layout tests for large shadow granularity.
Differential Revision: https://reviews.llvm.org/D39475
llvm-svn: 318581
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
Initial changes to support debugging PE/COFF files with LLDB on Windows through DIA SDK.
There is another set of changes required on the LLDB side before this does anything.
Differential Revision: https://reviews.llvm.org/D39517
llvm-svn: 318403
This function checks that:
1) It is safe to expand a SCEV;
2) It is OK to materialize it at the specified location.
For example, attempt to expand a loop's AddRec to the same loop's preheader should fail.
Differential Revision: https://reviews.llvm.org/D39236
llvm-svn: 318377
Summary:
This patch adds another failure mode for `validateCFIProtection(..)`, wherein any register that affects the indirect control flow instruction is clobbered to between the CFI-check and the instruction's execution.
Also includes a modification to make MCInstrDesc::hasDefOfPhysReg public.
Reviewers: vlad.tsyrklevich
Reviewed By: vlad.tsyrklevich
Subscribers: llvm-commits, pcc, kcc
Differential Revision: https://reviews.llvm.org/D39820
llvm-svn: 318238
Refactors the behaviour of building graphs out of FileAnalysis, allowing for analysis of the GraphResult by the callee without having to rebuild the graph. Means when we want to analyse the constructed graph (planned for later revisions), we don't do repeated work.
Also makes CFI verification in FileAnalysis now return an enum that allows us to differentiate why something failed, not just that it did/didn't fail.
Reviewers: vlad.tsyrklevich
Subscribers: kcc, pcc, llvm-commits
Differential Revision: https://reviews.llvm.org/D39764
llvm-svn: 317927
Summary:
This eliminates the boilerplate implementation of the iterator interface in
mapped_iterator.
This patch also adds unit tests that verify that the mapped function is applied
by operator* and operator->, and that references returned by the map function
are returned via operator*.
Reviewers: dblaikie, chandlerc
Subscribers: llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D39855
llvm-svn: 317902
We've worked around bugs in the frontend by ignoring the count from
wrapped segments when a line has at least one region entry segment.
Those frontend bugs are now fixed, so it's time to regenerate the
checked-in covmapping files and remove the workaround.
llvm-svn: 317761
In Rust, a trait can be implemented for any type, and if a trait
object pointer is used for the type, then a virtual table will be
emitted for that trait/type combination.
We would like debuggers to be able to inspect trait objects, which
requires finding the concrete type associated with a given vtable.
This patch changes LLVM so that any type can be passed to
replaceVTableHolder. This allows the Rust compiler to emit the needed
debug info -- associating a vtable with the concrete type for which it
was emitted.
This is a DWARF extension: DWARF only specifies the meaning of
DW_AT_containing_type in one specific situation. This style of DWARF
extension is routine, though, and LLVM already has one such case for
DW_AT_containing_type.
Patch by Tom Tromey!
Differential Revision: https://reviews.llvm.org/D39503
llvm-svn: 317730
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
Summary:
Extends SCL functionality to allow users to find the line number in the file the SCL is built from through SpecialCaseList::inSectionBlame(...).
Also removes the need to compile the SCL before use. As the matcher now contains a list of regexes to test against instead of a single regex, the regexes can be individually built on each insertion rather than one large compilation at the end of construction.
This change also fixes a bug where blank lines would cause the parser to become out-of-sync with the line number. An error on line `k` was being reported as being on line `k - num_blank_lines_before_k`.
Note: This change has a cyclical dependency on D39486. Both these changes must be submitted at the same time to avoid a build breakage.
Reviewers: vlad.tsyrklevich
Reviewed By: vlad.tsyrklevich
Subscribers: kcc, pcc, llvm-commits
Differential Revision: https://reviews.llvm.org/D39485
llvm-svn: 317617
This changes the interface of how targets describe how to legalize, see
the below description.
1. Interface for targets to describe how to legalize.
In GlobalISel, the API in the LegalizerInfo class is the main interface
for targets to specify which types are legal for which operations, and
what to do to turn illegal type/operation combinations into legal ones.
For each operation the type sizes that can be legalized without having
to change the size of the type are specified with a call to setAction.
This isn't different to how GlobalISel worked before. For example, for a
target that supports 32 and 64 bit adds natively:
for (auto Ty : {s32, s64})
setAction({G_ADD, 0, s32}, Legal);
or for a target that needs a library call for a 32 bit division:
setAction({G_SDIV, s32}, Libcall);
The main conceptual change to the LegalizerInfo API, is in specifying
how to legalize the type sizes for which a change of size is needed. For
example, in the above example, how to specify how all types from i1 to
i8388607 (apart from s32 and s64 which are legal) need to be legalized
and expressed in terms of operations on the available legal sizes
(again, i32 and i64 in this case). Before, the implementation only
allowed specifying power-of-2-sized types (e.g. setAction({G_ADD, 0,
s128}, NarrowScalar). A worse limitation was that if you'd wanted to
specify how to legalize all the sized types as allowed by the LLVM-IR
LangRef, i1 to i8388607, you'd have to call setAction 8388607-3 times
and probably would need a lot of memory to store all of these
specifications.
Instead, the legalization actions that need to change the size of the
type are specified now using a "SizeChangeStrategy". For example:
setLegalizeScalarToDifferentSizeStrategy(
G_ADD, 0, widenToLargerAndNarrowToLargest);
This example indicates that for type sizes for which there is a larger
size that can be legalized towards, do it by Widening the size.
For example, G_ADD on s17 will be legalized by first doing WidenScalar
to make it s32, after which it's legal.
The "NarrowToLargest" indicates what to do if there is no larger size
that can be legalized towards. E.g. G_ADD on s92 will be legalized by
doing NarrowScalar to s64.
Another example, taken from the ARM backend is:
for (unsigned Op : {G_SDIV, G_UDIV}) {
setLegalizeScalarToDifferentSizeStrategy(Op, 0,
widenToLargerTypesUnsupportedOtherwise);
if (ST.hasDivideInARMMode())
setAction({Op, s32}, Legal);
else
setAction({Op, s32}, Libcall);
}
For this example, G_SDIV on s8, on a target without a divide
instruction, would be legalized by first doing action (WidenScalar,
s32), followed by (Libcall, s32).
The same principle is also followed for when the number of vector lanes
on vector data types need to be changed, e.g.:
setAction({G_ADD, LLT::vector(8, 8)}, LegalizerInfo::Legal);
setAction({G_ADD, LLT::vector(16, 8)}, LegalizerInfo::Legal);
setAction({G_ADD, LLT::vector(4, 16)}, LegalizerInfo::Legal);
setAction({G_ADD, LLT::vector(8, 16)}, LegalizerInfo::Legal);
setAction({G_ADD, LLT::vector(2, 32)}, LegalizerInfo::Legal);
setAction({G_ADD, LLT::vector(4, 32)}, LegalizerInfo::Legal);
setLegalizeVectorElementToDifferentSizeStrategy(
G_ADD, 0, widenToLargerTypesUnsupportedOtherwise);
As currently implemented here, vector types are legalized by first
making the vector element size legal, followed by then making the number
of lanes legal. The strategy to follow in the first step is set by a
call to setLegalizeVectorElementToDifferentSizeStrategy, see example
above. The strategy followed in the second step
"moreToWiderTypesAndLessToWidest" (see code for its definition),
indicating that vectors are widened to more elements so they map to
natively supported vector widths, or when there isn't a legal wider
vector, split the vector to map it to the widest vector supported.
Therefore, for the above specification, some example legalizations are:
* getAction({G_ADD, LLT::vector(3, 3)})
returns {WidenScalar, LLT::vector(3, 8)}
* getAction({G_ADD, LLT::vector(3, 8)})
then returns {MoreElements, LLT::vector(8, 8)}
* getAction({G_ADD, LLT::vector(20, 8)})
returns {FewerElements, LLT::vector(16, 8)}
2. Key implementation aspects.
How to legalize a specific (operation, type index, size) tuple is
represented by mapping intervals of integers representing a range of
size types to an action to take, e.g.:
setScalarAction({G_ADD, LLT:scalar(1)},
{{1, WidenScalar}, // bit sizes [ 1, 31[
{32, Legal}, // bit sizes [32, 33[
{33, WidenScalar}, // bit sizes [33, 64[
{64, Legal}, // bit sizes [64, 65[
{65, NarrowScalar} // bit sizes [65, +inf[
});
Please note that most of the code to do the actual lowering of
non-power-of-2 sized types is currently missing, this is just trying to
make it possible for targets to specify what is legal, and how non-legal
types should be legalized. Probably quite a bit of further work is
needed in the actual legalizing and the other passes in GlobalISel to
support non-power-of-2 sized types.
I hope the documentation in LegalizerInfo.h and the examples provided in the
various {Target}LegalizerInfo.cpp and LegalizerInfoTest.cpp explains well
enough how this is meant to be used.
This drops the need for LLT::{half,double}...Size().
Differential Revision: https://reviews.llvm.org/D30529
llvm-svn: 317560
As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107104.html
and again more recently:
http://lists.llvm.org/pipermail/llvm-dev/2017-October/118118.html
...this is a step in cleaning up our fast-math-flags implementation in IR to better match
the capabilities of both clang's user-visible flags and the backend's flags for SDNode.
As proposed in the above threads, we're replacing the 'UnsafeAlgebra' bit (which had the
'umbrella' meaning that all flags are set) with a new bit that only applies to algebraic
reassociation - 'AllowReassoc'.
We're also adding a bit to allow approximations for library functions called 'ApproxFunc'
(this was initially proposed as 'libm' or similar).
...and we're out of bits. 7 bits ought to be enough for anyone, right? :) FWIW, I did
look at getting this out of SubclassOptionalData via SubclassData (spacious 16-bits),
but that's apparently already used for other purposes. Also, I don't think we can just
add a field to FPMathOperator because Operator is not intended to be instantiated.
We'll defer movement of FMF to another day.
We keep the 'fast' keyword. I thought about removing that, but seeing IR like this:
%f.fast = fadd reassoc nnan ninf nsz arcp contract afn float %op1, %op2
...made me think we want to keep the shortcut synonym.
Finally, this change is binary incompatible with existing IR as seen in the
compatibility tests. This statement:
"Newer releases can ignore features from older releases, but they cannot miscompile
them. For example, if nsw is ever replaced with something else, dropping it would be
a valid way to upgrade the IR."
( http://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility )
...provides the flexibility we want to make this change without requiring a new IR
version. Ie, we're not loosening the FP strictness of existing IR. At worst, we will
fail to optimize some previously 'fast' code because it's no longer recognized as
'fast'. This should get fixed as we audit/squash all of the uses of 'isFast()'.
Note: an inter-dependent clang commit to use the new API name should closely follow
commit.
Differential Revision: https://reviews.llvm.org/D39304
llvm-svn: 317488
This header already includes a CodeGen header and is implemented in
lib/CodeGen, so move the header there to match.
This fixes a link error with modular codegeneration builds - where a
header and its implementation are circularly dependent and so need to be
in the same library, not split between two like this.
llvm-svn: 317379