Do not modify this value on the application's behalf and just ensure API
modules are always available next to the LLVMConfig module. This is
already the case in the install tree so use file(COPY) to make it so in
the build tree. Include the LLVM-Config API module from next to the
LLVMConfig location.
Contributed by Brad King.
llvm-svn: 201047
These methods normally call each other and it is really annoying if the
arguments are in different order. The more common rule was that the arguments
specific to call are first (GV, Encoding, Suffix) and the auxiliary objects
(Mang, TM) come after. This patch changes the exceptions.
llvm-svn: 201044
Fun fact: looking at the TableGen code (around TGParser.cpp:1166), the
only difference in handling is that adjacent regular string literals are
concatenated in the parser.
llvm-svn: 201035
They're called code fragments, but they are really multiline string
literals. Just spotted this usage in a patch by Aaron using "code
fragments" for holding documentation text. I remember someone bemoaning
the lack of multiline string literals in TableGen, so I'm explicitly
documenting that code fragments are multiline string literals.
Let it be known that any use case needing multiline string literals in
TableGen (such as descriptions of options, or whatnot) can use use
code fragments (instead of C-style string concatenation or exceedingly
long lines). E.g.
class Bar<int n>;
class Baz<int n>;
class Doc<string desc> {
string Desc = desc;
}
def Foo : Bar<1>, Baz<3>, Doc<[{
This Foo is a Bar, and also a Baz. It can take 3 values:
* Qux
* Quux
* Quuux
}]>;
llvm-svn: 201033
In some cases it is possible to have a personality 0 unwinding opcodes in the
extab (such as when .handlerdata is used in the assembly). Simply decode the 3
opcodes for that case.
llvm-svn: 201030
This makes the tests more readable by using the -arm-attributes decoding support
in llvm-readobj since that is now available. Change the invocation commands to
be similar to other test and use a more precise triple (the tests only require
ARM EABI support).
llvm-svn: 201029
Before conditional store vectorization/unrolling we had only one
vectorized/unrolled basic block. After adding support for conditional store
vectorization this will not only be one block but multiple basic blocks. The
last block would have the back-edge. I updated the code to use a vector of basic
blocks instead of a single basic block and fixed the users to use the last entry
in this vector. But, I forgot to add the basic blocks to this vector!
Fixes PR18724.
llvm-svn: 201028
The bitcast instruction during constant materialization was not placed correcly
in the presence of phi nodes. This commit fixes the insertion point to be in the
idom instead.
This fixes PR18768
llvm-svn: 201009
This fix first traverses the whole use list of the constant expression and
keeps track of the instructions that need to be updated. Then perform the
fixup afterwards.
llvm-svn: 201008
- Properly displaying non null terminated StringRef.
- Auto expanding pointer types.
- Displaying real type names for PointerUnions.
- Using "size" and "capacity" across all containers.
- Simplifying code where possible.
llvm-svn: 201004
An intermediate solution until the problems with analyzer plugins linking with
llvm/Support and causing assertions due to duplicate GeneralCategory are solved.
llvm-svn: 200981
According to the AAPCS, when a CPRC is allocated to the stack, all other
VFP registers should be marked as unavailable.
I have also modified the rules for allocating non-CPRCs to the stack, to make
it more explicit that all GPRs must be made unavailable. I cannot think of a
case where the old version would produce incorrect answers, so there is no test
for this.
llvm-svn: 200970
Generalize the AArch64 .td nodes for AssertZext and AssertSext. Use
them to match the relevant pextr store instructions.
The test widen_load-2.ll requires a slight change because with the
stores gone, the remaining instructions are scheduled in a different
order.
Add test cases for SSE4 and AVX variants.
Resolves rdar://13414672.
Patch by Adam Nemet <anemet@apple.com>.
llvm-svn: 200957
mode.
Basically the idea is to transform code like this:
%idx = add nsw i32 %a, 1
%sextidx = sext i32 %idx to i64
%gep = gep i8* %myArray, i64 %sextidx
load i8* %gep
Into:
%sexta = sext i32 %a to i64
%idx = add nsw i64 %sexta, 1
%gep = gep i8* %myArray, i64 %idx
load i8* %gep
That way the computation can be folded into the addressing mode.
This transformation is done as part of the addressing mode matcher.
If the matching fails (not profitable, addressing mode not legal, etc.), the
matcher will revert the related promotions.
<rdar://problem/15519855>
llvm-svn: 200947
This solves a problem where a def machine operand has no uses but has
not been marked dead. In this case, the initial RP analysis was being
extra precise and determining from LiveIntervals the the register was
actually dead. This caused us to omit the register from the RP
tracker's block live out. That's all good, but the per-instruction
summary still accounted for it as a valid def. This could cause an
assertion in the tracker later when we underflow pressure.
This is from a bug report on an out-of-tree target. It is not
reproducible on well-behaved targets. I'm just making an obvious fix
without unit test.
llvm-svn: 200941