These tests were using SI-NOT: MOVREL to make sure concat vectors
weren't being lowered to stack loads and stores, but we are using
scratch buffers for the stack now instead of registers, so we need
to add an additional SI-NOT check for scratch buffers.
With this change I was able to uncover one broken test which will
be fixed in a future commit.
llvm-svn: 215269
Cleanup only: no functional change.
This patch makes RuntimeDyldMachO targets directly responsible for decoding
immediates, rather than letting them implement catch a callback from generic
code. Since this is a very target specific operation, it makes sense to let the
target-specific code drive it.
llvm-svn: 215255
I accidentally also used INC/DEC for unsigned arithmetic which doesn't work,
because INC/DEC don't set the required flag which is used for the overflow
check.
llvm-svn: 215237
std::map invalidates the iterator to any element that gets deleted, which means
we can't increment it correctly afterwards. This was causing Darwin test
failures.
llvm-svn: 215233
floating point exceptions, added use of flag to fold potentially exception
raising floating point math in selection DAG. No functionality change, as
targets have to explicitly ask for this behavior and none does today.
llvm-svn: 215222
Also added the testcase that should have been in r215194.
This behaviour has surprised me a few times now. The problem is that the
generated MipsSubtarget::ParseSubtargetFeatures() contains code like this:
if ((Bits & Mips::FeatureABICalls) != 0) IsABICalls = true;
so '-abicalls' means 'leave it at the default' and '+abicalls' means 'set it to
true'. In this case, (and the similar -modd-spreg case) I'd like the code to be
IsABICalls = (Bits & Mips::FeatureABICalls) != 0;
or possibly:
if ((Bits & Mips::FeatureABICalls) != 0)
IsABICalls = true;
else
IsABICalls = false;
and preferably arrange for 'Bits & Mips::FeatureABICalls' to be true by default
(on some triples).
llvm-svn: 215211
For best-case performance on Cortex-A57, we should try to use a balanced mix of odd and even D-registers when performing a critical sequence of independent, non-quadword FP/ASIMD floating-point multiply or multiply-accumulate operations.
This pass attempts to detect situations where the register allocation may adversely affect this load balancing and to change the registers used so as to better utilize the CPU.
Ideally we'd just take each multiply or multiply-accumulate in turn and allocate it alternating even or odd registers. However, multiply-accumulates are most efficiently performed in the same functional unit as their accumulation operand. Therefore this pass tries to find maximal sequences ("Chains") of multiply-accumulates linked via their accumulation operand, and assign them all the same "color" (oddness/evenness).
This optimization affects S-register and D-register floating point multiplies and FMADD/FMAs, as well as vector (floating point only) muls and FMADD/FMA. Q register instructions (and 128-bit vector instructions) are not affected.
llvm-svn: 215199
ARM bots (& others, I think, now that I look) were failing because we
were using incorrect printf-style format specifiers. They were wrong
on almost any platform, actually, just mostly harmlessly so.
llvm-svn: 215196
This patch implements the main rules for -mno-abicalls such as reserving $gp,
and emitting the correct .option directive.
Patch by Matheus Almeida and Toma Tabacu
Differential Revision: http://reviews.llvm.org/D4231
llvm-svn: 215194
This short-circuited our error reporting for incorrectly specified
target triples (you'd get AArch64 code instead).
Should fix PR20567.
llvm-svn: 215191
GlobalOpt didn't know how to simulate InsertValueInst or
ExtractValueInst. Optimizing these is pretty straightforward.
N.B. This came up when looking at clang's IRGen for MS ABI member
pointers; they are represented as aggregates.
llvm-svn: 215184