to what is needed for constant islands. The prescan method for Mips16 constant
islands will eventually go away. It is only temporary and should be done
earlier when the instructions are first created or from the DAG. If we keep
it here we need to handle better the situation where constant islands
is called multiple times since don't want to prescan more than once.
llvm-svn: 195569
I had to move some code and I moved a declaration forward past it's first use
in the function but by nutty coincidence there was another variable of the same
name and type and with completely unrelated function that was declared globally
in the class so no compilation error ensued.
It required some unusual conditions for it to even matter. Caused test
case casts.c in test-suite to fail during compilation with a duplicate
symbol error. I would have noticed it during final code review for this port.
llvm-svn: 195565
proxy. This lets a function pass query a module analysis manager.
However, the interface is const to indicate that only cached results can
be safely queried.
With this, I think the new pass manager is largely functionally complete
for modules and analyses. Still lots to test, and need to generalize to
SCCs and Loops, and need to build an adaptor layer to support the use of
existing Pass objects in the new managers.
llvm-svn: 195538
This avoids the need for an extra list of SkeletonCUs and associated
cleanup while staging things to be cleaner for further type unit
improvements.
Also hopefully fixes a memory leak introduced in r195166.
llvm-svn: 195536
SLP vectorization. Based on the code in BBVectorizer.
Fixes PR17741.
Patch by Raul Silvera, reviewed by Hal and Nadav. Reformatted by my
driving of clang-format. =]
llvm-svn: 195528
results.
This is the last piece of infrastructure needed to effectively support
querying *up* the analysis layers. The next step will be to introduce
a proxy which provides access to those layers with appropriate use of
const to direct queries to the safe interface.
llvm-svn: 195525
a non-relocatable number offset.
One fixme to make the ranges as discrete data structures and
have range lists explicitly represented rather than as a list of symbols.
llvm-svn: 195523
one function's analyses are invalidated at a time. Also switch the
preservation of the proxy to *fully* preserve the lower (function)
analyses.
Combined, this gets both upward and downward analysis invalidation to
a point I'm happy with:
- A function pass invalidates its function analyses, and its parent's
module analyses.
- A module pass invalidates all of its functions' analyses including the
set of which functions are in the module.
- A function pass can preserve a module analysis pass.
- If all function passes preserve a module analysis pass, that
preservation persists. If any doesn't the module analysis is
invalidated.
- A module pass can opt into managing *all* function analysis
invalidation itself or *none*.
- The conservative default is none, and the proxy takes the maximally
conservative approach that works even if the set of functions has
changed.
- If a module pass opts into managing function analysis invalidation it
has to propagate the invalidation itself, the proxy just does nothing.
The only thing really missing is a way to query for a cached analysis or
nothing at all. With this, function passes can more safely request
a cached module analysis pass without fear of it accidentally running
part way through.
llvm-svn: 195519
We were ignoring the ordered/onordered bits and also the signed/unsigned
bits of condition codes when lowering the DAG to MachineInstrs.
NOTE: This is a candidate for the 3.4 branch.
llvm-svn: 195514
gcov expects every function to contain an entry block that
unconditionally branches into the next block. clang does not implement
basic blocks in this manner, so gcov did not output correct branch info
if the entry block branched to multiple blocks.
This change splits every function's entry block into an empty block and
a block with the rest of the instructions. The instrumentation code will
take care of the rest.
llvm-svn: 195513
We can share the implementation between StripSymbols and dropping debug info
for metadata versions that do not match.
Also update the comments to match the implementation. A follow-on patch will
drop the "Debug Info Version" module flag in StripDebugInfo.
llvm-svn: 195505
Utilizing the 8 and 16 bit comparison instructions, even when an input can
be folded into the comparison instruction itself, is typically not worth it.
There are too many partial register stalls as a result, leading to significant
slowdowns. By always performing comparisons on at least 32-bit
registers, performance of the calculation chain leading to the
comparison improves. Continue to use the smaller comparisons when
minimizing size, as that allows better folding of loads into the
comparison instructions.
rdar://15386341
llvm-svn: 195496
If the beginning of the loop was also the entry block
of the function, branches were inserted to the entry block
which isn't allowed. If this occurs, create a new dummy
function entry block that branches to the start of the loop.
llvm-svn: 195493
Improvements over r195317:
- Set/restore EnableFastISel flag instead of just running FastISel within
SelectAllBasicBlocks; the flag is checked in various places, and
FastISel won't run properly if those places don't do the right thing.
- Test looks for normal ISel versus FastISel behavior, and not
something more subtle that doesn't work everywhere.
Based on work by Andrea Di Biagio.
llvm-svn: 195491
The fix is simply to use CurI instead of I when handling aliases to
avoid accessing a invalid iterator.
original message:
Convert linkonce* to weak* instead of strong.
Also refactor the logic into a helper function. This is an important improve
on mingw where the linker complains about mixed weak and strong symbols.
Converting to weak ensures that the symbol is not dropped, but keeps in a
comdat, making the linker happy.
llvm-svn: 195477
- When simplifying the mask generation for BLEND, check whether that mask is
also consumed by other non-BLEND insns. If true, skip that simplification.
llvm-svn: 195476
I've no idea why I decided to handle TMxx differently from all the other
high/low logic operations, but it was a stupid thing to do. The high
registers aren't available as separate 32-bit registers on z10,
so subreg_h32 can't be used on a GR64 there.
I've normally been testing with z196 and with -O3 and so hadn't noticed
this until now.
llvm-svn: 195473
Also refactor the logic into a helper function. This is an important improvement
on mingw where the linker complains about mixed weak and strong symbols.
Converting to weak ensures that the symbol is not dropped, but keeps in a
comdat, making the linker happy.
llvm-svn: 195470
lowerBUILD_VECTOR() was treating integer constant splats as being legal
regardless of whether they had undef values. This caused instruction
selection failures when the undefs were legalized to zero, making the
constant non-splat.
Fixed this by requiring HasAnyUndef to be false for a integer constant
splat to be legal. If it is true, a new node is generated with the undefs
replaced with the necessary values to remain a splat.
llvm-svn: 195455
run methods of the analysis passes.
Also generalizes and re-uses the SFINAE for transformation passes so
that users can write an analysis pass and only accept an analysis
manager if that is useful to their pass.
This completes the plumbing to make an analysis manager available
through every pass's run method if desired so that passes no longer need
to be constructed around them.
llvm-svn: 195451
This is supposed to be the whole type of the IR unit, and so we
shouldn't pass a pointer to it but rather the value itself. In turn, we
need to provide a 'Module *' as that type argument (for example). This
will become more relevant with SCCs or other units which may not be
passed as a pointer type, but also brings consistency with the
transformation pass templates.
llvm-svn: 195445
rather than the constructors of passes.
This simplifies the APIs of passes significantly and removes an error
prone pattern where the *same* manager had to be given to every
different layer. With the new API the analysis managers themselves will
have to be cross connected with proxy analyses that allow a pass at one
layer to query for the analysis manager of another layer. The proxy will
both expose a handle to the other layer's manager and it will provide
the invalidation hooks to ensure things remain consistent across layers.
Finally, the outer-most analysis manager has to be passed to the run
method of the outer-most pass manager. The rest of the propagation is
automatic.
I've used SFINAE again to allow passes to completely disregard the
analysis manager if they don't need or want to care. This helps keep
simple things simple for users of the new pass manager.
Also, the system specifically supports passing a null pointer into the
outer-most run method if your pass pipeline neither needs nor wants to
deal with analyses. I find this of dubious utility as while some
*passes* don't care about analysis, I'm not sure there are any
real-world users of the pass manager itself that need to avoid even
creating an analysis manager. But it is easy to support, so there we go.
Finally I renamed the module proxy for the function analysis manager to
the more verbose but less confusing name of
FunctionAnalysisManagerModuleProxy. I hate this name, but I have no idea
what else to name these things. I'm expecting in the fullness of time to
potentially have the complete cross product of types at the proxy layer:
{Module,SCC,Function,Loop,Region}AnalysisManager{Module,SCC,Function,Loop,Region}Proxy
(except for XAnalysisManagerXProxy which doesn't make any sense)
This should make it somewhat easier to do the next phases which is to
build the upward proxy and get its invalidation correct, as well as to
make the invalidation within the Module -> Function mapping pass be more
fine grained so as to invalidate fewer fuction analyses.
After all of the proxy analyses are done and the invalidation working,
I'll finally be able to start working on the next two fun fronts: how to
adapt an existing pass to work in both the legacy pass world and the new
one, and building the SCC, Loop, and Region counterparts. Fun times!
llvm-svn: 195400
Splitting a basic block will create a new ALU clause, so we need to make
sure we aren't moving uses of registers that are local to their
current clause into a new one.
I had a test case for this, but unfortunately unrelated schedule changes
invalidated it, and I wasn't been able to come up with another one.
NOTE: This is a candidate for the 3.4 branch.
llvm-svn: 195399
The legalizer can now do this type of expansion for more
type combinations without loading and storing to and
from the stack.
NOTE: This is a candidate for the 3.4 branch.
llvm-svn: 195398