This patch adds a -post-link-opts option to llvm-ld which allows an arbitrary
program to optimize bytecode after linking. The program is passed two file
names. The first is the input (linked bytecode) the second is where it must
place its output (presumably after optimizing). If the output file is bytecode,
it is used as a substitute for the input. This will allow things like poolalloc
to be written as a separate program instead of a loadable module or built into
LLVM.
llvm-svn: 24893
the module being constructed. This is used to correctly name the module.
Previously the name of the linker tool was used which produces confusing
output when the module identifier is used in an error message.
llvm-svn: 24699
llvm-gcc main.c -Wl,-native -o a.out -g
This is important because it used by many configure scripts.
John, please pull this onto the 1.6 branch.
llvm-svn: 24163
into the LLVMAnalysis library.
This allows LLVMTranform and LLVMTransformUtils to be archives and linked
with LLVMAnalysis.a, which provides any missing definitions.
llvm-svn: 24036
SparcV9 JIT.
2. Make LLVMTransformUtils a relinked object file and always link it before
LLVMAnalysis.a. These two libraries have circular dependencies on each
other which creates problem when building the SparcV9 JIT. This change
fixes the dependency on all platforms problems with a minimum of fuss.
llvm-svn: 24023
pointer marking the end of the list, the zero *must* be cast to the pointer
type. An un-cast zero is a 32-bit int, and at least on x86_64, gcc will
not extend the zero to 64 bits, thus allowing the upper 32 bits to be
random junk.
The new END_WITH_NULL macro may be used to annotate a such a function
so that GCC (version 4 or newer) will detect the use of un-casted zero
at compile time.
llvm-svn: 23888
not completely painful to use. Once we decide a directory has a bytecode
library, we know it this function returns true, no need to scan entire directories.
llvm-svn: 23405
2. Concatenate -lfoo and -L/bar options into a single option instead of
passing "-L /bar" (for example) which doesn't work on Darwin.
3. Send -v output to stderr instead of stdout
llvm-svn: 23404
These changes modify the makefiles so that the output of flex and bison are
placed in the SRC directory, not the OBJ directory. It is intended that they
be checked in as any other LLVM source so that platforms without convenient
access to flex/bison can be compiled. From now on, if you change a .y or
.l file you *must* also commit the generated .cpp and .h files.
llvm-svn: 23115
Instead of emitting a JIT stub that looks like this:
internal void %l1_main_entry_2E_ce_wrapper(int) {
header:
%resolver = call sbyte* %getPointerToNamedFunction( sbyte* getelementptr ([20 x sbyte]* %l1_main_entry_2E_ce_name, int 0, int 0) ) ; <sbyte*> [#uses=1]
%resolverCast = cast sbyte* %resolver to void (int)* ; <void (int)*> [#uses=1]
call void %resolverCast( int %0 )
ret void
}
Emit one that looks like this:
internal void %l1_main_entry_2E_ce_wrapper(int) {
Entry:
%fpcache = load void (int)** %l1_main_entry_2E_ce.fpcache ; <void (int)*> [#uses=2]
%isNull = seteq void (int)* %fpcache, null ; <bool> [#uses=1]
br bool %isNull, label %lookupfp, label %usecache
usecache: ; preds = %lookupfp, %Entry
%fp = phi void (int)* [ %resolverCast, %lookupfp ], [ %fpcache, %Entry ] ; <void (int)*> [#uses=1]
call void %fp( int %0 )
ret void
lookupfp: ; preds = %Entry
%resolver = call sbyte* %getPointerToNamedFunction( sbyte* getelementptr ([20 x sbyte]* %l1_main_entry_2E_ce_name, int 0, int 0) ) ; <sbyte*> [#uses=1]
%resolverCast = cast sbyte* %resolver to void (int)* ; <void (int)*> [#uses=2]
store void (int)* %resolverCast, void (int)** %l1_main_entry_2E_ce.fpcache
br label %usecache
}
This makes the JIT debugger *MUCH* faster on large programs, as
getPointerToNamedFunction takes time linear with the size of the program, and
before we would call it every time a function in the text module was called from
the safe module (ouch!).
llvm-svn: 22387
This chagne just renames some sys::Path methods to ensure they are not
misused. The Path documentation now divides methods into two dimensions:
Path/Disk and accessor/mutator. Path accessors and mutators only operate
on the Path object itself without making any disk accesses. Disk accessors
and mutators will also access or modify the file system. Because of the
potentially destructive nature of disk mutators, it was decided that all
such methods should end in the work "Disk" to ensure the user recognizes
that the change will occur on the file system. This patch makes that
change. The method name changes are:
makeReadable -> makeReadableOnDisk
makeWriteable -> makeWriteableOnDisk
makeExecutable -> makeExecutableOnDisk
setStatusInfo -> setStatusInfoOnDisk
createDirectory -> createDirectoryOnDisk
createFile -> createFileOnDisk
createTemporaryFile -> createTemporaryFileOnDisk
destroy -> eraseFromDisk
rename -> renamePathOnDisk
These changes pass the Linux Deja Gnu tests.
llvm-svn: 22354
Get rid of the difference between file paths and directory paths. The Path
class now simply stores a path that can refer to either a file or a
directory. This required various changes in the implementation and interface
of the class with the corresponding impact to its users. Doxygen comments were
also updated to reflect these changes. Interface changes are:
appendDirectory -> appendComponent
appendFile -> appendComponent
elideDirectory -> eraseComponent
elideFile -> eraseComponent
elideSuffix -> eraseSuffix
renameFile -> rename
setDirectory -> set
setFile -> set
Changes pass Dejagnu and llvm-test/SingleSource tests.
llvm-svn: 22349