to work out (in a very simplistic way) which function
arguments (pointer arguments only) are only dereferenced
and so do not escape. Mark such arguments 'nocapture'.
llvm-svn: 61525
This removes all the _8, _16, _32, and _64 opcodes and replaces each
group with an unsuffixed opcode. The MemoryVT field of the AtomicSDNode
is now used to carry the size information. In tablegen, the size-specific
opcodes are replaced by size-independent opcodes that utilize the
ability to compose them with predicates.
This shrinks the per-opcode tables and makes the code that handles
atomics much more concise.
llvm-svn: 61389
172 %ECX<def> = MOV32rr %reg1039<kill>
180 INLINEASM <es:subl $5,$1
sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9, %EAX<kill>,
36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
188 %EAX<def> = MOV32rr %EAX<kill>
196 %ECX<def> = MOV32rr %ECX<kill>
204 %ECX<def> = MOV32rr %ECX<kill>
212 %EAX<def> = MOV32rr %EAX<kill>
220 %EAX<def> = MOV32rr %EAX
228 %reg1039<def> = MOV32rr %ECX<kill>
The early clobber operand ties ECX input to the ECX def.
The live interval of ECX is represented as this:
%reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
The right way to represent this is something like
%reg20,inf = [46,47:2)[174,182:1)[181:230:0) 0@174-(182) 1@181-230 @2@46-(47)
Of course that won't work since that means overlapping live ranges defined by two val#.
The workaround for now is to add a bit to val# which says the val# is redefined by a early clobber def somewhere. This prevents the move at 228 from being optimized away by SimpleRegisterCoalescing::AdjustCopiesBackFrom.
llvm-svn: 61259
The EH_frame and .eh symbols are now private, except for darwin9 and earlier.
The patch also fixes the definition of PrivateGlobalPrefix on pcc linux.
llvm-svn: 61242
The problematic part of this patch is that we were out of attribute bits,
requiring some fancy bit hacking to make it fit (by shrinking alignment)
without breaking existing users or the file format.
This change will require users to rebuild llvm-gcc to match llvm.
llvm-svn: 61239
computation code. Also, avoid adding output-depenency edges when both
defs are dead, which frequently happens with EFLAGS defs.
Compute Depth and Height lazily, and always in terms of edge latency
values. For the schedulers that don't care about latency, edge latencies
are set to 1.
Eliminate Cycle and CycleBound, and LatencyPriorityQueue's Latencies array.
These are all subsumed by the Depth and Height fields.
llvm-svn: 61073
alignment attribute such that 0 means unaligned.
This will probably require a rebuild of llvm-gcc because of the change to
Attributes.h. If you see many test failures on "make check", please rebuild
your llvm-gcc.
llvm-svn: 61030
memdep keeps track of how PHIs affect the pointer in dep queries, which
allows it to eliminate the load in cases like rle-phi-translate.ll, which
basically end up being:
BB1:
X = load P
br BB3
BB2:
Y = load Q
br BB3
BB3:
R = phi [P] [Q]
load R
turning "load R" into a phi of X/Y. In addition to additional exposed
opportunities, this makes memdep safe in many cases that it wasn't before
(which is required for load PRE) and also makes it substantially more
efficient. For example, consider:
bb1: // has many predecessors.
P = some_operator()
load P
In this example, previously memdep would scan all the predecessors of BB1
to see if they had something that would mustalias P. In some cases (e.g.
test/Transforms/GVN/rle-must-alias.ll) it would actually find them and end
up eliminating something. In many other cases though, it would scan and not
find anything useful. MemDep now stops at a block if the pointer is defined
in that block and cannot be phi translated to predecessors. This causes it
to miss the (rare) cases like rle-must-alias.ll, but makes it faster by not
scanning tons of stuff that is unlikely to be useful. For example, this
speeds up GVN as a whole from 3.928s to 2.448s (60%)!. IMO, scalar GVN
should be enhanced to simplify the rle-must-alias pointer base anyway, which
would allow the loads to be eliminated.
In the future, this should be enhanced to phi translate through geps and
bitcasts as well (as indicated by FIXMEs) making memdep even more powerful.
llvm-svn: 61022
callee will not introduce any new aliases of that pointer.
The attributes had all bits allocated already, so I decided to collapse
alignment. Alignment was previously stored as a 16-bit integer from bits 16 to
32 of the attribute, but it was required to be a power of 2. Now it's stored in
log2 encoded form in five bits from 16 to 21. That gives us 11 more bits of
space.
You may have already noticed that you only need four bits to encode a 16-bit
power of two, so why five bits? Because the AsmParser accepted 32-bit
alignments, even though we couldn't store them (they were silently discarded).
Now we can store them in memory, but not in the bitcode.
The bitcode format was already storing these as 64-bit VBR integers. So, the
bitcode format stays the same, keeping the alignment values stored as 16 bit
raw values. There's some hideous code in the reader and writer that deals with
this, waiting to be ripped out the moment we run out of bits again and have to
replace the parameter attributes table encoding.
llvm-svn: 61019
This stuff is not used outside Base.td, and with the conversion of the
compilation graph to string-based format became much less (if at all)
useful.
llvm-svn: 60873