Previously, LLVM had no functional way of performing casts inside of a
DIExpression(), which made salvaging cast instructions other than Noop
casts impossible. This patch enables the salvaging of casts by using the
DW_OP_LLVM_convert operator for SExt and Trunc instructions.
There is another issue which is exposed by this fix, in which fragment
DIExpressions (which are preserved more readily by this patch) for
values that must be split across registers in ISel trigger an assertion,
as the 'split' fragments extend beyond the bounds of the fragment
DIExpression causing an error. This patch also fixes this issue by
checking the fragment status of DIExpressions which are to be split, and
dropping fragments that are invalid.
The DebugVariable class is a class declared in LiveDebugValues.cpp which
is used to uniquely identify a single variable, using its source
variable, inline location, and fragment info to do so. This patch moves
this class into DebugInfoMetadata.h, making it available in a much
broader scope.
DIExpressions with shift operators should not be fragmented for the same
reason as arithmetic operators: carry over cannot be expressed from one
fragment to the other, so an invalid result would be produced.
Differential Revision: https://reviews.llvm.org/D70601
Summary:
Also, replace the SmallVector with a normal C array.
Reviewers: vsk
Reviewed By: vsk
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70498
DIExpression::isImplicit() did not handle DW_OP_LLVM_fragment
correctly. It was scanning the elements in the expression by
iterating from the end. But we do not know the position of
ops unless we iterate from the beginning of the expression,
since DW_OP:s and their operands are stored flat in the expression
list. The old code also assumed that a DW_OP_LLVM_fragment
only occupied one element in the expression list, but it actually
occupies three elements.
Summary:
Internally in LLVM's metadata we use DW_OP_entry_value operations with
the same semantics as DWARF; that is, its operand specifies the number
of bytes that the entry value covers.
At the time of emitting entry values we don't know the emitted size of
the DWARF expression that the entry value will cover. Currently the size
is hardcoded to 1 in DIExpression, and other values causes the verifier
to fail. As the size is 1, that effectively means that we can only have
valid entry values for registers that can be encoded in one byte, which
are the registers with DWARF numbers 0 to 31 (as they can be encoded as
single-byte DW_OP_reg0..DW_OP_reg31 rather than a multi-byte
DW_OP_regx). It is a bit confusing, but it seems like llvm-dwarfdump
will print an operation "correctly", even if the byte size is less than
that, which may make it seem that we emit correct DWARF for registers
with DWARF numbers > 31. If you instead use readelf for such cases, it
will interpret the number of specified bytes as a DWARF expression. This
seems like a limitation in llvm-dwarfdump.
As suggested in D66746, a way forward would be to add an internal
variant of DW_OP_entry_value, DW_OP_LLVM_entry_value, whose operand
instead specifies the number of operations that the entry value covers,
and we then translate that into the byte size at the time of emission.
In this patch that internal operation is added. This patch keeps the
limitation that a entry value can only be applied to simple register
locations, but it will fix the issue with the size operand being
incorrect for DWARF numbers > 31.
Reviewers: aprantl, vsk, djtodoro, NikolaPrica
Reviewed By: aprantl
Subscribers: jyknight, fedor.sergeev, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67492
llvm-svn: 374881
Dump the DWARF information about call sites and call site parameters into
debug info sections.
The patch also provides an interface for the interpretation of instructions
that could load values of a call site parameters in order to generate DWARF
about the call site parameters.
([13/13] Introduce the debug entry values.)
Co-authored-by: Ananth Sowda <asowda@cisco.com>
Co-authored-by: Nikola Prica <nikola.prica@rt-rk.com>
Co-authored-by: Ivan Baev <ibaev@cisco.com>
Differential Revision: https://reviews.llvm.org/D60716
llvm-svn: 365467
This patch addresses PR41675, where a stack-pointer variable is dereferenced
too many times by its location expression, presenting a value on the stack as
the pointer to the stack.
The difference between a stack *pointer* DBG_VALUE and one that refers to a
value on the stack, is currently the indirect flag. However the DWARF backend
will also try to guess whether something is a memory location or not, based
on whether there is any computation in the location expression. By simply
prepending the stack offset to existing expressions, we can accidentally
convert a register location into a memory location, which introduces a
suprise (and unintended) dereference.
The solution is to add DW_OP_stack_value whenever we add a DIExpression
computation to a stack *pointer*. It's an implicit location computed on the
expression stack, thus needs to be flagged as a stack_value.
For the edge case where the offset is zero and the location could be a register
location, DIExpression::prepend will still generate opcodes, and thus
DW_OP_stack_value must still be added.
Differential Revision: https://reviews.llvm.org/D63429
llvm-svn: 364736
Add the IR and the AsmPrinter parts for handling of the DW_OP_entry_values
DWARF operation.
([11/13] Introduce the debug entry values.)
Co-authored-by: Ananth Sowda <asowda@cisco.com>
Co-authored-by: Nikola Prica <nikola.prica@rt-rk.com>
Co-authored-by: Ivan Baev <ibaev@cisco.com>
Differential Revision: https://reviews.llvm.org/D60866
llvm-svn: 364542
The goal is to improve hwasan's error reporting for stack use-after-return by
recording enough information to allow the specific variable that was accessed
to be identified based on the pointer's tag. Currently we record the PC and
lower bits of SP for each stack frame we create (which will eventually be
enough to derive the base tag used by the stack frame) but that's not enough
to determine the specific tag for each variable, which is the stack frame's
base tag XOR a value (the "tag offset") that is unique for each variable in
a function.
In IR, the tag offset is most naturally represented as part of a location
expression on the llvm.dbg.declare instruction. However, the presence of the
tag offset in the variable's actual location expression is likely to confuse
debuggers which won't know about tag offsets, and moreover the tag offset
is not required for a debugger to determine the location of the variable on
the stack, so at the DWARF level it is represented as an attribute so that
it will be ignored by debuggers that don't know about it.
Differential Revision: https://reviews.llvm.org/D63119
llvm-svn: 363635
Refactor DIExpression::With* into a flag enum in order to be less
error-prone to use (as discussed on D60866).
Patch by Djordje Todorovic.
Differential Revision: https://reviews.llvm.org/D61943
llvm-svn: 361137
TypedDINodeRef<T> is a redundant wrapper of Metadata * that is actually a T *.
Accordingly, change DI{Node,Scope,Type}Ref uses to DI{Node,Scope,Type} * or their const variants.
This allows us to delete many resolve() calls that clutter the code.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D61369
llvm-svn: 360108
The PrologEpilogInserter need to insert a DW_OP_deref_size before
prepending a memory location expression to an already implicit
expression to avoid having the existing expression act on the memory
address instead of the value behind it.
The reason for using DW_OP_deref_size and not plain DW_OP_deref is that
big-endian targets need to read the right size as simply truncating a
larger read would yield the wrong result (LSB bytes are not at the lower
address).
This re-commit fixes issues reported in the first one. Namely deref was
inserted under wrong conditions and additionally the deref_size argument
was incorrectly encoded.
Differential Revision: https://reviews.llvm.org/D59687
llvm-svn: 359535
It causes clang to crash while building Chromium. See https://crbug.com/952230
for reproducer.
> The PrologEpilogInserter need to insert a DW_OP_deref_size before
> prepending a memory location expression to an already implicit
> expression to avoid having the existing expression act on the memory
> address instead of the value behind it.
>
> The reason for using DW_OP_deref_size and not plain DW_OP_deref is that
> big-endian targets need to read the right size as simply truncating a
> larger read would yield the wrong result (LSB bytes are not at the lower
> address).
>
> Differential Revision: https://reviews.llvm.org/D59687
llvm-svn: 358281
The PrologEpilogInserter need to insert a DW_OP_deref_size before
prepending a memory location expression to an already implicit
expression to avoid having the existing expression act on the memory
address instead of the value behind it.
The reason for using DW_OP_deref_size and not plain DW_OP_deref is that
big-endian targets need to read the right size as simply truncating a
larger read would yield the wrong result (LSB bytes are not at the lower
address).
Differential Revision: https://reviews.llvm.org/D59687
llvm-svn: 358268
COMMON blocks are a feature of Fortran that has no direct analog in C languages, but they are similar to data sections in assembly language programming. A COMMON block is a named area of memory that holds a collection of variables. Fortran subprograms may map the COMMON block memory area to their own, possibly distinct, non-empty list of variables. A Fortran COMMON block might look like the following example.
COMMON /ALPHA/ I, J
For this construct, the compiler generates a new scope-like DI construct (!DICommonBlock) into which variables (see I, J above) can be placed. As the common block implies a range of storage with global lifetime, the !DICommonBlock refers to a !DIGlobalVariable. The Fortran variable that comprise the COMMON block are also linked via metadata to offsets within the global variable that stands for the entire common block.
@alpha_ = common global %alphabytes_ zeroinitializer, align 64, !dbg !27, !dbg !30, !dbg !33!14 = distinct !DISubprogram(…)
!20 = distinct !DICommonBlock(scope: !14, declaration: !25, name: "alpha")
!25 = distinct !DIGlobalVariable(scope: !20, name: "common alpha", type: !24)
!27 = !DIGlobalVariableExpression(var: !25, expr: !DIExpression())
!29 = distinct !DIGlobalVariable(scope: !20, name: "i", file: !3, type: !28)
!30 = !DIGlobalVariableExpression(var: !29, expr: !DIExpression())
!31 = distinct !DIGlobalVariable(scope: !20, name: "j", file: !3, type: !28)
!32 = !DIExpression(DW_OP_plus_uconst, 4)
!33 = !DIGlobalVariableExpression(var: !31, expr: !32)
The DWARF generated for this is as follows.
DW_TAG_common_block:
DW_AT_name: alpha
DW_AT_location: @alpha_+0
DW_TAG_variable:
DW_AT_name: common alpha
DW_AT_type: array of 8 bytes
DW_AT_location: @alpha_+0
DW_TAG_variable:
DW_AT_name: i
DW_AT_type: integer*4
DW_AT_location: @Alpha+0
DW_TAG_variable:
DW_AT_name: j
DW_AT_type: integer*4
DW_AT_location: @Alpha+4
Patch by Eric Schweitz!
Differential Revision: https://reviews.llvm.org/D54327
llvm-svn: 357934
Introduce a DW_OP_LLVM_convert Dwarf expression pseudo op that allows
for a convenient way to perform type conversions on the Dwarf expression
stack. As an additional bonus it paves the way for using other Dwarf
v5 ops that need to reference a base_type.
The new DW_OP_LLVM_convert is used from lib/Transforms/Utils/Local.cpp
to perform sext/zext on debug values but mainly the patch is about
preparing terrain for adding other Dwarf v5 ops that need to reference a
base_type.
For Dwarf v5 the op maps to DW_OP_convert and for earlier versions a
complex shift & mask pattern is generated to emulate sext/zext.
This is a recommit of r356442 with trivial fixes for the failing tests.
Differential Revision: https://reviews.llvm.org/D56587
llvm-svn: 356451
Introduce a DW_OP_LLVM_convert Dwarf expression pseudo op that allows
for a convenient way to perform type conversions on the Dwarf expression
stack. As an additional bonus it paves the way for using other Dwarf
v5 ops that need to reference a base_type.
The new DW_OP_LLVM_convert is used from lib/Transforms/Utils/Local.cpp
to perform sext/zext on debug values but mainly the patch is about
preparing terrain for adding other Dwarf v5 ops that need to reference a
base_type.
For Dwarf v5 the op maps to DW_OP_convert and for earlier versions a
complex shift & mask pattern is generated to emulate sext/zext.
Differential Revision: https://reviews.llvm.org/D56587
llvm-svn: 356442
Summary:
According to
https://docs.nvidia.com/cuda/archive/10.0/ptx-writers-guide-to-interoperability/index.html#cuda-specific-dwarf,
the compiler should emit the DW_AT_address_class attribute for all
variable and parameter. It means, that DW_AT_address_class attribute
should be used in the non-standard way to support compatibility with the
cuda-gdb debugger.
Clang is able to generate the information about the variable address
class. This information is emitted as the expression sequence
`DW_OP_constu <DWARF Address Space> DW_OP_swap DW_OP_xderef`. The patch
tries to find all such expressions and transform them into
`DW_AT_address_class <DWARF Address Space>` if target is NVPTX and the debugger is gdb.
If the expression is not found, then default values are used. For the
local variables <DWARF Address Space> is set to ADDR_local_space(6), for
the globals <DWARF Address Space> is set to ADDR_global_space(5). The
values are taken from the table in the same section 5.2. CUDA-Specific
DWARF Definitions.
Reviewers: echristo, probinson
Subscribers: jholewinski, aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D57157
llvm-svn: 353203
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
Added a pair of APIs for encoding/decoding the 3 components of a DWARF discriminator described in http://lists.llvm.org/pipermail/llvm-dev/2016-October/106532.html: the base discriminator, the duplication factor (useful in profile-guided optimization) and the copy index (used to identify copies of code in cases like loop unrolling)
The encoding packs 3 unsigned values in 32 bits. This CL addresses 2 issues:
- communicates overflow back to the user
- supports encoding all 3 components together. Current APIs assume a sequencing of events. For example, creating a new discriminator based on an existing one by changing the base discriminator was not supported.
Reviewers: davidxl, danielcdh, wmi, dblaikie
Reviewed By: dblaikie
Subscribers: zzheng, dmgreen, aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D55681
llvm-svn: 349973
Packing the flags into one bitcode word will save effort in
adding new flags in the future.
Differential Revision: https://reviews.llvm.org/D54755
llvm-svn: 347806
This will hold flags specific to subprograms. In the future
we could potentially free up scarce bits in DIFlags by moving
subprogram-specific flags from there to the new flags word.
This patch does not change IR/bitcode formats, that will be
done in a follow-up.
Differential Revision: https://reviews.llvm.org/D54597
llvm-svn: 347239
Summary:
Ranges base address specifiers can save a lot of object size in
relocation records especially in optimized builds.
For an optimized self-host build of Clang with split DWARF and debug
info compression in object files, but uncompressed debug info in the
executable, this change produces about 18% smaller object files and 6%
larger executable.
While it would've been nice to turn this on by default, gold's 32 bit
gdb-index support crashes on this input & I don't think there's any
perfect heuristic to implement solely in LLVM that would suffice - so
we'll need a flag one way or another (also possible people might want to
aggressively optimized for executable size that contains debug info
(even with compression this would still come at some cost to executable
size)) - so let's plumb it through.
Differential Revision: https://reviews.llvm.org/D54242
llvm-svn: 346788
Summary:
Some lines have a hit counter where they should not have one.
For example, in C++, some cleanup is adding at the end of a scope represented by a '}'.
So such a line has a hit counter where a user expects to not have one.
The goal of the patch is to add this information in DILocation which is used to get the covered lines in GCOVProfiling.cpp.
A following patch in clang will add this information when generating IR (https://reviews.llvm.org/D49916).
Reviewers: marco-c, davidxl, vsk, javed.absar, rnk
Reviewed By: rnk
Subscribers: eraman, xur, danielcdh, aprantl, rnk, dblaikie, #debug-info, vsk, llvm-commits, sylvestre.ledru
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D49915
llvm-svn: 342631
The function's new implementation from r340583 had a bug in it that
could cause an invalid scope to be generated when merging two
DILocations with no common ancestor scope.
This patch detects this situation and picks the scope of the first
location. This is not perfect, because the scope is misleading, but on
the other hand, this will be a line 0 location.
rdar://problem/43687474
Differential Revision: https://reviews.llvm.org/D51238
llvm-svn: 340672
Fix a set of related bugs:
* Considering two locations as equivalent when their lines are the same
but their scopes are different causes erroneous debug info that
attributes a commoned call to be attributed to one of the two calls it
was commoned from.
* The previous code to compute a new location's scope was inaccurate and
would use the inlinedAt that was the /parent/ of the inlinedAt that is
the nearest common one, and also used that parent scope instead of the
nearest common scope.
* Not generating new locations generally seemed like a lower quality
choice
There was some risk that generating more new locations could hurt object
size by making more fine grained line table entries, but it looks like
that was offset by the decrease in line table (& address & ranges) size
caused by more accurately computing the scope - which likely lead to
fewer range entries (more contiguous ranges) & reduced size that way.
All up with these changes I saw minor reductions (-1.21%, -1.77%) in
.rela.debug_ranges and .rela.debug_addr (in a fission, compressed debug
info build) as well as other minor size changes (generally reductinos)
across the board (-1.32% debug_info.dwo, -1.28% debug_loc.dwo). Measured
in an optimized (-O2) build of the clang binary.
If you are investigating a size regression in an optimized debug builds,
this is certainly a patch to look into - and I'd be happy to look into
any major regressions found & see what we can do to address them.
llvm-svn: 340583
In cases where the debugger load time is a worthwhile tradeoff (or less
costly - such as loading from a DWP instead of a variety of DWOs
(possibly over a high-latency/distributed filesystem)) against object
file size, it can be reasonable to disable pubnames and corresponding
gdb-index creation in the linker.
A backend-flag version of this was implemented for NVPTX in
D44385/r327994 - which was fine for NVPTX which wouldn't mix-and-match
CUs. Now that it's going to be a user-facing option (likely powered by
"-gno-pubnames", the same as GCC) it should be encoded in the
DICompileUnit so it can vary per-CU.
After this, likely the NVPTX support should be migrated to the metadata
& the previous flag implementation should be removed.
Reviewers: aprantl
Differential Revision: https://reviews.llvm.org/D50213
llvm-svn: 339939
Flags in DIBasicType will be used to pass attributes used in
DW_TAG_base_type, such as DW_AT_endianity.
Patch by Chirag Patel!
Differential Revision: https://reviews.llvm.org/D49610
llvm-svn: 339714
Summary:
Added an option that allows to emit only '.loc' and '.file' kind debug
directives, but disables emission of the DWARF sections. Required for
NVPTX target to support profiling. It requires '.loc' and '.file'
directives, but does not require any DWARF sections for the profiler.
Reviewers: probinson, echristo, dblaikie
Subscribers: aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D46021
llvm-svn: 338616
LowerDbgDeclare inserts a dbg.value before each use of an address
described by a dbg.declare. When inserting a dbg.value before a CallInst
use, however, it fails to append DW_OP_deref to the DIExpression.
The DW_OP_deref is needed to reflect the fact that a dbg.value describes
a source variable directly (as opposed to a dbg.declare, which relies on
pointer indirection).
This patch adds in the DW_OP_deref where needed. This results in the
correct values being shown during a debug session for a program compiled
with ASan and optimizations (see https://reviews.llvm.org/D49520). Note
that ConvertDebugDeclareToDebugValue is already correct -- no changes
there were needed.
One complication is that SelectionDAG is unable to distinguish between
direct and indirect frame-index (FRAMEIX) SDDbgValues. This patch also
fixes this long-standing issue in order to not regress integration tests
relying on the incorrect assumption that all frame-index SDDbgValues are
indirect. This is a necessary fix: the newly-added DW_OP_derefs cannot
be lowered properly otherwise. Basically the fix prevents a direct
SDDbgValue with DIExpression(DW_OP_deref) from being dereferenced twice
by a debugger. There were a handful of tests relying on this incorrect
"FRAMEIX => indirect" assumption which actually had incorrect
DW_AT_locations: these are all fixed up in this patch.
Testing:
- check-llvm, and an end-to-end test using lldb to debug an optimized
program.
- Existing unit tests for DIExpression::appendToStack fully cover the
new DIExpression::append utility.
- check-debuginfo (the debug info integration tests)
Differential Revision: https://reviews.llvm.org/D49454
llvm-svn: 338069
appendToVector used the wrong overload of SmallVector::append, resulting
in it appending the same element to a vector `getSize()` times. This did
not cause a problem when initially committed because appendToVector was
only used to append 1-element operands.
This changes appendToVector to use the correct overload of append().
Testing: ./unittests/IR/IRTests --gtest_filter='*DIExpressionTest*'
llvm-svn: 336466
The replaceAllDbgUsesWith utility helps passes preserve debug info when
replacing one value with another.
This improves upon the existing insertReplacementDbgValues API by:
- Updating debug intrinsics in-place, while preventing use-before-def of
the replacement value.
- Falling back to salvageDebugInfo when a replacement can't be made.
- Moving the responsibiliy for rewriting llvm.dbg.* DIExpressions into
common utility code.
Along with the API change, this teaches replaceAllDbgUsesWith how to
create DIExpressions for three basic integer and pointer conversions:
- The no-op conversion. Applies when the values have the same width, or
have bit-for-bit compatible pointer representations.
- Truncation. Applies when the new value is wider than the old one.
- Zero/sign extension. Applies when the new value is narrower than the
old one.
Testing:
- check-llvm, check-clang, a stage2 `-g -O3` build of clang,
regression/unit testing.
- This resolves a number of mis-sized dbg.value diagnostics from
Debugify.
Differential Revision: https://reviews.llvm.org/D48676
llvm-svn: 336451
Summary:
When salvaging a dbg.declare/dbg.addr we should not add
DW_OP_stack_value to the DIExpression
(see test/Transforms/InstCombine/salvage-dbg-declare.ll).
Consider this example
%vla = alloca i32, i64 2
call void @llvm.dbg.declare(metadata i32* %vla, metadata !1, metadata !DIExpression())
Instcombine will turn it into
%vla1 = alloca [2 x i32]
%vla1.sub = getelementptr inbounds [2 x i32], [2 x i32]* %vla, i64 0, i64 0
call void @llvm.dbg.declare(metadata [2 x i32]* %vla1.sub, metadata !19, metadata !DIExpression())
If the GEP can be eliminated, then the dbg.declare will be salvaged
and we should get
%vla1 = alloca [2 x i32]
call void @llvm.dbg.declare(metadata [2 x i32]* %vla1, metadata !19, metadata !DIExpression())
The problem was that salvageDebugInfo did not recognize dbg.declare
as being indirect (%vla1 points to the value, it does not hold the
value), so we incorrectly got
call void @llvm.dbg.declare(metadata [2 x i32]* %vla1, metadata !19, metadata !DIExpression(DW_OP_stack_value))
I also made sure that llvm::salvageDebugInfo and
DIExpression::prependOpcodes do not add DW_OP_stack_value to
the DIExpression in case no new operands are added to the
DIExpression. That way we avoid to, unneccessarily, turn a
register location expression into an implicit location expression
in some situations (see test11 in test/Transforms/LICM/sinking.ll).
Reviewers: aprantl, vsk
Reviewed By: aprantl, vsk
Subscribers: JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D48837
llvm-svn: 336191
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is
!DILabel(scope: !1, name: "foo", file: !2, line: 3)
We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is
llvm.dbg.label(metadata !1)
It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.
We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.
Differential Revision: https://reviews.llvm.org/D45024
Patch by Hsiangkai Wang.
llvm-svn: 331841
Summary:
When we create a fragment expression, and there already is an
old fragment expression, we assert that the new fragment is
within the range for the old fragment.
If for example the old fragment expression says that we
describe bit 10-16 of a variable (Offset=10, Size=6),
and we now want to create a new fragment expression only
describing bit 3-6 of the original value, then the resulting
fragment expression should have Offset=13, Size=3.
The assert is supposed to catch if the resulting fragment
expression is outside the range for the old fragment. However,
it used to verify that the Offset+Size of the new fragment was
smaller or equal than Offset+Size for the old fragment. What
we really want to check is that Offset+Size of the new fragment
is smaller than the Size of the old fragment.
Reviewers: aprantl, vsk
Reviewed By: aprantl
Subscribers: davide, llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D46391
llvm-svn: 331465
This patch adds support for fragment expressions
TryToShrinkGlobalToBoolean() which were previously just dropped.
Thanks to Reid Kleckner for providing me a reproducer!
llvm-svn: 331086
This lifts a restriction on DILocation::getMergedLocation(), allowing it
to create merged locations for instructions other than calls.
Instruction::applyMergedLocation() now defaults to creating merged
locations for all instructions.
The default behavior of getMergedLocation() is unchanged: callers which
invoke it directly are unaffected.
This change will enable a follow-up Mem2Reg fix which improves crash
reporting.
Differential Revision: https://reviews.llvm.org/D45396
llvm-svn: 329955
In DWARF v5 the Line Number Program Header is extensible, allowing values with
new content types. In this extension a content type is added,
DW_LNCT_LLVM_source, which contains the embedded source code of the file.
Add new optional attribute for !DIFile IR metadata called source which contains
source text. Use this to output the source to the DWARF line table of code
objects. Analogously extend METADATA_FILE in Bitcode and .file directive in ASM
to support optional source.
Teach llvm-dwarfdump and llvm-objdump about the new values. Update the output
format of llvm-dwarfdump to make room for the new attribute on file_names
entries, and support embedded sources for the -source option in llvm-objdump.
Differential Revision: https://reviews.llvm.org/D42765
llvm-svn: 325970
Preserve debug info from a dead 'and' instruction with a constant.
Patch by Djordje Todorovic.
Differential Revision: https://reviews.llvm.org/D43163
llvm-svn: 325119
Here are the number of additional debug values salvaged in a stage2
build of clang:
63 SALVAGE: MUL
1250 SALVAGE: SDIV
(No values were salvaged from `srem` instructions in this experiment,
but it's a simple case to handle so we might as well.)
llvm-svn: 324976
Here are the number of additional debug values salvaged in a stage2
build of clang:
1912 SALVAGE: ASHR
405 SALVAGE: LSHR
249 SALVAGE: SHL
llvm-svn: 324975
Rather than encode the absence of a checksum with a Kind variant, instead put
both the kind and value in a struct and wrap it in an Optional.
Differential Revision: http://reviews.llvm.org/D43043
llvm-svn: 324928
Extend salvageDebugInfo to preserve the debug info from a dead 'or'
with a constant.
Patch by Ismail Badawi!
Differential Revision: https://reviews.llvm.org/D43129
llvm-svn: 324764
This patch is the LLVM part of fixing the issues, described in
https://bugs.llvm.org/show_bug.cgi?id=36168
* The representation of enumerator values in the debug info metadata now
contains a boolean flag isUnsigned, which determines how the bits of
the value are interpreted.
* The DW_TAG_enumeration type DIE now always (for DWARF version >= 3)
includes a DW_AT_type attribute, which refers to the underlying
integer type, as suggested in DWARFv4 (5.7 Enumeration Type Entries).
* The debug info metadata for enumeration type contains (in flags)
indication whether this is a C++11 "fixed enum".
* For C++11 enumeration with a fixed underlying type, the DIE also
includes the DW_AT_enum_class attribute (for DWARF version >= 4).
* Encoding of enumerator constants uses DW_FORM_sdata for signed values
and DW_FORM_udata for unsigned values, as suggested by DWARFv4 (7.5.4
Attribute Encodings).
The changes should be backwards compatible:
* the isUnsigned attribute is optional and defaults to false.
* if the underlying type for the enumeration is not available, the
enumerator values are considered signed.
* the FixedEnum flag defaults to clear.
* the bitcode format for DIEnumerator stores the unsigned flag bit #1 of
the first record element, so the format does not change and the zero
previously stored there is consistent with the false default for
IsUnsigned.
Differential Revision: https://reviews.llvm.org/D42734
llvm-svn: 324489
n Rust, an enum that carries data in the variants is, essentially, a
discriminated union. Furthermore, the Rust compiler will perform
space optimizations on such enums in some situations. Previously,
DWARF for these constructs was emitted using a hack (a magic field
name); but this approach stopped working when more space optimizations
were added in https://github.com/rust-lang/rust/pull/45225.
This patch changes LLVM to allow discriminated unions to be
represented in DWARF. It adds createDiscriminatedUnionType and
createDiscriminatedMemberType to DIBuilder and then arranges for this
to be emitted using DWARF's DW_TAG_variant_part and DW_TAG_variant.
Note that DWARF requires that a discriminated union be represented as
a structure with a variant part. However, as Rust only needs to emit
pure discriminated unions, this is what I chose to expose on
DIBuilder.
Patch by Tom Tromey!
Differential Revision: https://reviews.llvm.org/D42082
llvm-svn: 324426
Summary:
This patch extends the DISubrange 'count' field to take either a
(signed) constant integer value or a reference to a DILocalVariable
or DIGlobalVariable.
This is patch [1/3] in a series to extend LLVM's DISubrange Metadata
node to support debugging of C99 variable length arrays and vectors with
runtime length like the Scalable Vector Extension for AArch64. It is
also a first step towards representing more complex cases like arrays
in Fortran.
Reviewers: echristo, pcc, aprantl, dexonsmith, clayborg, kristof.beyls, dblaikie
Reviewed By: aprantl
Subscribers: rnk, probinson, fhahn, aemerson, rengolin, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D41695
llvm-svn: 323313
This makes DILocation::getMergedLocation() do what its comment says it
does when merging locations for an Instruction: set the common inlineAt
scope. This simplifies Instruction::applyMergedLocation() a bit.
Testing: check-llvm, check-clang
Differential Revision: https://reviews.llvm.org/D39628
llvm-svn: 317524
This patch contains fix for reverted commit
rL312318 which was causing failure due to use
of unchecked dyn_cast to CIInit.
Patch by: Nikola Prica.
llvm-svn: 313870
This reverts commit 6389e7aa724ea7671d096f4770f016c3d86b0d54.
There is a bug in this implementation where the string value of the
checksum is outputted, instead of the actual hex bytes. Therefore the
checksum is incorrect, and this prevent pdbs from being loaded by visual
studio. Revert this until the checksum is emitted correctly.
llvm-svn: 313431
Summary:
The checksums had already been placed in the IR, this patch allows
MCCodeView to actually write it out to an MCStreamer.
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D37157
llvm-svn: 313374
r312318 - Debug info for variables whose type is shrinked to bool
r312325, r312424, r312489 - Test case for r312318
Revision 312318 introduced a null dereference bug.
Details in https://bugs.llvm.org/show_bug.cgi?id=34490
llvm-svn: 312758
This patch provides such debug information for integer
variables whose type is shrinked to bool by providing
dwarf expression which returns either constant initial
value or other value.
Patch by Nikola Prica.
Differential Revision: https://reviews.llvm.org/D35994
llvm-svn: 312318
DIImportedEntity has a line number, but not a file field. To determine
the decl_line/decl_file we combine the line number from the
DIImportedEntity with the file from the DIImportedEntity's scope. This
does not work correctly when the parent scope is a DINamespace or a
DIModule, both of which do not have a source file.
This patch adds a file field to DIImportedEntity to unambiguously
identify the source location of the using/import declaration. Most
testcase updates are mechanical, the interesting one is the removal of
the FIXME in test/DebugInfo/Generic/namespace.ll.
This fixes PR33822. See https://bugs.llvm.org/show_bug.cgi?id=33822
for more context.
<rdar://problem/33357889>
https://bugs.llvm.org/show_bug.cgi?id=33822
Differential Revision: https://reviews.llvm.org/D35583
llvm-svn: 308398
Summary:
This patch is part of 3 patches that together form a single patch, but must be introduced in stages in order not to break things.
The way that LLVM interprets DW_OP_plus in DIExpression nodes is basically that of the DW_OP_plus_uconst operator since LLVM expects an unsigned constant operand. This unnecessarily restricts the DW_OP_plus operator, preventing it from being used to describe the evaluation of runtime values on the expression stack. These patches try to align the semantics of DW_OP_plus and DW_OP_minus with that of the DWARF definition, which pops two elements off the expression stack, performs the operation and pushes the result back on the stack.
This is done in three stages:
• The first patch (LLVM) adds support for DW_OP_plus_uconst.
• The second patch (Clang) contains changes all its uses from DW_OP_plus to DW_OP_plus_uconst.
• The third patch (LLVM) changes the semantics of DW_OP_plus and DW_OP_minus to be in line with its DWARF meaning. This patch includes the bitcode upgrade from legacy DIExpressions.
Patch by Sander de Smalen.
Reviewers: echristo, pcc, aprantl
Reviewed By: aprantl
Subscribers: fhahn, javed.absar, aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D33894
llvm-svn: 305386
Summary:
This patch is part of 3 patches that together form a single patch, but must be introduced in stages in order not to break things.
The way that LLVM interprets DW_OP_plus in DIExpression nodes is basically that of the DW_OP_plus_uconst operator since LLVM expects an unsigned constant operand. This unnecessarily restricts the DW_OP_plus operator, preventing it from being used to describe the evaluation of runtime values on the expression stack. These patches try to align the semantics of DW_OP_plus and DW_OP_minus with that of the DWARF definition, which pops two elements off the expression stack, performs the operation and pushes the result back on the stack.
This is done in three stages:
• The first patch (LLVM) adds support for DW_OP_plus_uconst.
• The second patch (Clang) contains changes all its uses from DW_OP_plus to DW_OP_plus_uconst.
• The third patch (LLVM) changes the semantics of DW_OP_plus and DW_OP_minus to be in line with its DWARF meaning. This patch includes the bitcode upgrade from legacy DIExpressions.
Patch by Sander de Smalen.
Reviewers: pcc, echristo, aprantl
Reviewed By: aprantl
Subscribers: fhahn, aprantl, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33892
llvm-svn: 305304
Fixes inalloca parameters, which previously all pointed to the same
offset. Extend the test to use llvm-readobj so that we can test the
offset in a readable way.
llvm-svn: 302578
Fixes the issue highlighted in
http://lists.llvm.org/pipermail/cfe-dev/2014-June/037500.html.
The DW_AT_decl_file and DW_AT_decl_line attributes on namespaces can
prevent LLVM from uniquing types that are in the same namespace. They
also don't carry any meaningful information.
rdar://problem/17484998
Differential Revision: https://reviews.llvm.org/D32648
llvm-svn: 301706
This is a follow up to the fix in r298360 to improve the handling of debug
values when redundant LEAs are removed. The fix in r298360 effectively
discarded the debug values. This patch now attempts to preserve the debug
values by using the DWARF DW_OP_stack_value operation via prependDIExpr.
Moved functions appendOffset and prependDIExpr from Local.cpp to
DebugInfoMetadata.cpp and made them available as static member functions of
DIExpression.
Differential Revision: https://reviews.llvm.org/D31604
llvm-svn: 301630
DISubprogram currently has 10 pointer operands, several of which are
often nullptr. This patch reduces the amount of memory allocated by
DISubprogram by rearranging the operands such that containing type,
template params, and thrown types come last, and are only allocated
when they are non-null (or followed by non-null operands).
This patch also eliminates the entirely unused DisplayName operand.
This saves up to 4 pointer operands per DISubprogram. (I tried
measuring the effect on peak memory usage on an LTO link of an X86
llc, but the results were very noisy).
This reapplies r301498 with an attempted workaround for g++.
Differential Revision: https://reviews.llvm.org/D32560
llvm-svn: 301501
DISubprogram currently has 10 pointer operands, several of which are
often nullptr. This patch reduces the amount of memory allocated by
DISubprogram by rearranging the operands such that containing type,
template params, and thrown types come last, and are only allocated
when they are non-null (or followed by non-null operands).
This patch also eliminates the entirely unused DisplayName operand.
This saves up to 4 pointer operands per DISubprogram. (I tried
measuring the effect on peak memory usage on an LTO link of an X86
llc, but the results were very noisy).
llvm-svn: 301498
For Swift we would like to be able to encode the error types that a
function may throw, so the debugger can display them alongside the
function's return value when finish-ing a function.
DWARF defines DW_TAG_thrown_type (intended to be used for C++ throw()
declarations) that is a perfect fit for this purpose. This patch wires
up support for DW_TAG_thrown_type in LLVM by adding a list of thrown
types to DISubprogram.
To offset the cost of the extra pointer, there is a follow-up patch
that turns DISubprogram into a variable-length node.
rdar://problem/29481673
Differential Revision: https://reviews.llvm.org/D32559
llvm-svn: 301489
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades and a change
to the Bitcode record for DIGlobalVariable, that makes upgrading the
old format unambiguous also for variables without DIExpressions.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 290153
This reverts commit 289920 (again).
I forgot to implement a Bitcode upgrade for the case where a DIGlobalVariable
has not DIExpression. Unfortunately it is not possible to safely upgrade
these variables without adding a flag to the bitcode record indicating which
version they are.
My plan of record is to roll the planned follow-up patch that adds a
unit: field to DIGlobalVariable into this patch before recomitting.
This way we only need one Bitcode upgrade for both changes (with a
version flag in the bitcode record to safely distinguish the record
formats).
Sorry for the churn!
llvm-svn: 289982
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289920
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289902
so we can stop using DW_OP_bit_piece with the wrong semantics.
The entire back story can be found here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20161114/405934.html
The gist is that in LLVM we've been misinterpreting DW_OP_bit_piece's
offset field to mean the offset into the source variable rather than
the offset into the location at the top the DWARF expression stack. In
order to be able to fix this in a subsequent patch, this patch
introduces a dedicated DW_OP_LLVM_fragment operation with the
semantics that we used to apply to DW_OP_bit_piece, which is what we
actually need while inside of LLVM. This patch is complete with a
bitcode upgrade for expressions using the old format. It does not yet
fix the DWARF backend to use DW_OP_bit_piece correctly.
Implementation note: We discussed several options for implementing
this, including reserving a dedicated field in DIExpression for the
fragment size and offset, but using an custom operator at the end of
the expression works just fine and is more efficient because we then
only pay for it when we need it.
Differential Revision: https://reviews.llvm.org/D27361
rdar://problem/29335809
llvm-svn: 288683
Change type of some missed DebugInfo-related alignment variables,
that are still uint64_t, to uint32_t.
Original change introduced in r284482.
llvm-svn: 285242
Summary:
Fixes PR28281.
MSVC lists indirect virtual base classes in the field list of a class,
using LF_IVBCLASS records. This change makes LLVM emit such records
when processing DW_TAG_inheritance tags with the DIFlagVirtual and
(newly introduced) DIFlagIndirect tags.
Reviewers: rnk, ruiu, zturner
Differential Revision: https://reviews.llvm.org/D25578
llvm-svn: 285130
- Add alignment attribute to DIVariable family
- Modify bitcode format to match new DIVariable representation
- Update tests to match these changes (also add bitcode upgrade test)
- Expect that frontend passes non-zero align value only when it is not default
(was forcibly aligned by alignas()/_Alignas()/__atribute__(aligned())
Differential Revision: https://reviews.llvm.org/D25073
llvm-svn: 284678
In futher patches we shall have alignment field added to DIVariable family
and switching from uint64_t to uint32_t will save 4 bytes per variable.
Differential Revision: https://reviews.llvm.org/D25620
llvm-svn: 284482