In preparation for adding PDB support to LLVM, this moves the
DWARF parsing code to its own subdirectory under DebugInfo, and
renames LLVMDebugInfo to LLVMDebugInfoDWARF.
This is purely a mechanical / build system change.
Differential Revision: http://reviews.llvm.org/D7269
Reviewed by: Eric Christopher
llvm-svn: 227586
utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
llvm-svn: 225974
The color scheme is the same as the one used by the colorize dwarfdump
script on Darwin.
A new --color option can be used to forcibly turn color on or off.
http://reviews.llvm.org/D6852
llvm-svn: 225269
dsymutil needs access to DWARF specific inforamtion, the small DIContext
wrapper isn't sufficient. Other DWARF consumers might want to use it too
(I'm looking at you lldb).
Differential Revision: http://reviews.llvm.org/D6694
llvm-svn: 224594
Add in definedness checks for shift operators, null checks when
pointers are assumed by the code to be non-null, and explicit
unreachables.
llvm-svn: 224255
As dump() methods should be. To allow that, do not store the DWARFFormValue
objects used for the dump in the header data.
Per Alexey's suggestion!
llvm-svn: 222436
ELF targets (and maybe COFF) use relocations when referring
to strings in the .debug_str section. Handle that in the
accelerator table dumper. This commit restores the
test/DebugInfo/cross-cu-inlining.ll test to its expected
platform independant form, validating that the fix works
(this test failed on linux boxes).
llvm-svn: 222029
This reverts commit r221842 which was a revert of r221836 and of the
test parts of r221837.
This new version fixes an UB bug pointed out by David (along with
addressing some other review comments), makes some dumping more
resilient to broken input data and forces the accelerator tables
to be dumped in the tests where we use them (this decision is
platform specific otherwise).
llvm-svn: 222003
This reverts commit r221836.
The tests are asserting on some buildbots. This also reverts the
test part of r221837 as it relies on dwarfdump dumping the
accelerator tables.
llvm-svn: 221842
Currently FormValues are only used for attributes of DIEs and thus
uers always have a CU lying around when calling into the FormValue
API.
Accelerator tables encode their information using the same Forms
as the attributes, thus it is natural to use DWARFFormValue to
extract/dump them. There is no CU in that case though. Allow the
API to be called with a null CU arguemnt by making the RelocMap
lookup conditional on the CU pointer validity. And document this
new behvior in the header. (Test coverage for this use of the API
comes in the DwarfAccelTable support patch)
llvm-svn: 221835
This change depends on the ApplePropertyString helper that I sent spearately.
Not sure how you want this tested: as a tool test by adding a binary to dump, or as an llvm test starting from an IR file?
Reviewers: dblaikie, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5689
llvm-svn: 219507
DW_AT_specification and DW_AT_abstract_origin resolving was only performed
on subroutine DIEs because it used the getSubroutineName method. Introduce
a more generic getName() and use it to dump the reference attributes.
Testcases have been updated to check the printed names instead of the offsets
except when the name could be ambiguous.
Reviewers: dblaikie, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5625
llvm-svn: 219506
There are two methods in SectionRef that can fail:
* getName: The index into the string table can be invalid.
* getContents: The section might point to invalid contents.
Every other method will always succeed and returning and std::error_code just
complicates the code. For example, a section can have an invalid alignment,
but if we are able to get to the section structure at all and create a
SectionRef, we will always be able to read that invalid alignment.
llvm-svn: 219314
It would be more convenient to pass DWARFSection into DWARFUnitSection
constructor, instead of passing its components (Data and RelocAddrMap)
as a separate arguments.
llvm-svn: 219252
There will be multiple TypeUnits in an unlinked object that will be extracted
from different sections. Now that we have DWARFUnitSection that is supposed
to represent an input section, we need a DWARFUnitSection<TypeUnit> per
input .debug_types section.
Once this is done, the interface is homogenous and we can move the Section
parsing code into DWARFUnitSection.
This is a respin of r218513 that got reverted because it broke some builders.
This new version features an explicit move constructor for the DWARFUnitSection
class to workaround compilers unable to generate correct C++11 default
constructors.
Reviewers: samsonov, dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5482
llvm-svn: 218606
Users of getSectionContents shouldn't try to pass in BSS or virtual
sections. In all instances, this is a bug in the code calling this
routine.
N.B. Some COFF implementations (like CL) will mark their BSS sections as
taking space on disk. This would confuse COFFObjectFile into thinking
the section is larger than the file.
llvm-svn: 218549
This reverts commit r218513.
Buildbots using libstdc++ issue an error when trying to copy
SmallVector<std::unique_ptr<>>. Revert the commit until we have a fix.
llvm-svn: 218514
Summary:
There will be multiple TypeUnits in an unlinked object that will be extracted
from different sections. Now that we have DWARFUnitSection that is supposed
to represent an input section, we need a DWARFUnitSection<TypeUnit> per
input .debug_types section.
Once this is done, the interface is homogenous and we can move the Section
parsing code into DWARFUnitSection.
Reviewers: samsonov, dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5482
llvm-svn: 218513
This change replaces the brittle if/else chain of string comparisons
with a switch statement on the detected target triple, removing the
need for testing arbitrary architecture names returned from
getFileFormatName, whose primary purpose seems to be for display
(user-interface) purposes. The visitor now takes a reference to the
object file, rather than its arbitrary file format name to figure out
whether the file is a 32 or 64-bit object file and what the detected
target triple is.
A set of tests have been added to help show that the refactoring processes
relocations for the same targets as the original code.
Patch by Charlie Turner.
llvm-svn: 218406
This reverts commit faac033f7364bb4226e22c8079c221c96af10d02.
The test depends on all targets to be enabled in llc in order to pass,
and needs to be rewritten/refactored to not have that dependency.
llvm-svn: 218393
This change replaces the brittle if/else chain of string comparisons
with a switch statement on the detected target triple, removing the
need for testing arbitrary architecture names returned from
getFileFormatName, whose primary purpose seems to be for display
(user-interface) purposes. The visitor now takes a reference to the
object file, rather than its arbitrary file format name to figure out
whether the file is a 32 or 64-bit object file and what the detected
target triple is.
A set of tests have been added to help show that the refactoring processes
relocations for the same targets as the original code.
Patch by Charlie Turner.
llvm-svn: 218388
Summary: getSubroutineName is currently only used by llvm-symbolizer, thus add a binary test containing a cross-cu inlining example.
Reviewers: samsonov, dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5394
llvm-svn: 218245
Summary:
getFileNameForUnit() is basically a wrapper around LineTable::getFileNameByIndex().
Fold its additional functionality (adding the DWARFUnit compilation dir) into
LineTable::getFileNameByIndex().
getFileLineInfoForCompileUnit() is a wrapper around getFileNameForUnit(). As
a function to search the line information by address, it seems natural to put
it in the LineTable also.
Before this commit only the Context with its private helpers could do Linetable
lookups. This newly exposed feature will be used by the DIE dumping code to
get access to file information referenced in DIE attributes.
This commit has already been partly reviewed in D5192 and contained an
additional and a bit controversial 'realpath' call that is left out of this
patch. We can reinstate that realpath code later if it is desirable.
Test Plan:
The patch contains no tests as it should be functionally equivalent to the
previous code. As requested in the last review, I checked if the relative
path handling copied from the Context to LineTable::getFileNameByIndex()
was covered, and indeed the symbolizer tests fail if it is removed.
Reviewers: dblaikie, echristo, aprantl, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5354
llvm-svn: 218125
The current code is only able to return the right unit if the passed offset
is the exact offset of a section. Generalize the search function by comparing
againt the offset of the next unit instead and by switching the search
algorithm to upper_bound.
This way, the unit returned is the first unit with a getNextUnitOffset()
strictly greater than the searched offset, which is exactly what we want.
Note that there is no need for testing the range of the resulting unit as
the offsets of a DWARFUnitSection are in a single contiguous range from
0 inclusive to lastUnit->getNextUnitOffset() exclusive.
Reviewers: dblaikie samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5262
llvm-svn: 218040
Use fully qualified name inside a typedef from llvm::iterator_range<...> to
iterator_range. This is reported (rightly I think) by GCC as an
ambiguous name redefinition. Hope this fixes the buildbots.
llvm-svn: 217751
A DWARFUnitSection is the collection of Units that have been extracted from
the same debug section.
By embeding a reference to their DWARFUnitSection in each unit, the DIEs
will be able to resolve inter-unit references by interrogating their Unit's
DWARFUnitSection.
This is a minimal patch where the DWARFUnitSection is-a SmallVector of Units,
thus exposing exactly the same interface as before. Followup-up patches might
change from inheritance to composition in order to expose only the wanted
DWARFUnitSection abstraction.
Differential Revision: http://reviews.llvm.org/D5310
llvm-svn: 217747