the special values that for ARM would be used with IB or DA modes. Fall
through and consider materializing a new base address is it would be
profitable.
llvm-svn: 112329
all the other LDM/STM instructions. This fixes asm printer crashes when
compiling with -O0. I've changed one of the NEON tests (vst3.ll) to run
with -O0 to check this in the future.
Prior to this change VLDM/VSTM used addressing mode #5, but not really.
The offset field was used to hold a count of the number of registers being
loaded or stored, and the AM5 opcode field was expanded to specify the IA
or DB mode, instead of the standard ADD/SUB specifier. Much of the backend
was not aware of these special cases. The crashes occured when rewriting
a frameindex caused the AM5 offset field to be changed so that it did not
have a valid submode. I don't know exactly what changed to expose this now.
Maybe we've never done much with -O0 and NEON. Regardless, there's no longer
any reason to keep a count of the VLDM/VSTM registers, so we can use
addressing mode #4 and clean things up in a lot of places.
llvm-svn: 112322
A = shl x, 42
...
B = lshr ..., 38
which can be transformed into:
A = shl x, 4
...
iff we can prove that the would-be-shifted-in bits
are already zero. This eliminates two shifts in the testcase
and allows eliminate of the whole i128 chain in the real example.
llvm-svn: 112314
framework, which is good at ripping through bitfield
operations. This generalize a bunch of the existing
xforms that instcombine does, such as
(x << c) >> c -> and
to handle intermediate logical nodes. This is useful for
ripping up the "promote to large integer" code produced by
SRoA.
llvm-svn: 112304
transformation collect all the addrecs with the same loop
add combine them at once rather than starting everything over
at the first chance.
llvm-svn: 112290
by the SRoA "promote to large integer" code, eliminating
some type conversions like this:
%94 = zext i16 %93 to i32 ; <i32> [#uses=2]
%96 = lshr i32 %94, 8 ; <i32> [#uses=1]
%101 = trunc i32 %96 to i8 ; <i8> [#uses=1]
This also unblocks other xforms from happening, now clang is able to compile:
struct S { float A, B, C, D; };
float foo(struct S A) { return A.A + A.B+A.C+A.D; }
into:
_foo: ## @foo
## BB#0: ## %entry
pshufd $1, %xmm0, %xmm2
addss %xmm0, %xmm2
movdqa %xmm1, %xmm3
addss %xmm2, %xmm3
pshufd $1, %xmm1, %xmm0
addss %xmm3, %xmm0
ret
on x86-64, instead of:
_foo: ## @foo
## BB#0: ## %entry
movd %xmm0, %rax
shrq $32, %rax
movd %eax, %xmm2
addss %xmm0, %xmm2
movapd %xmm1, %xmm3
addss %xmm2, %xmm3
movd %xmm1, %rax
shrq $32, %rax
movd %eax, %xmm0
addss %xmm3, %xmm0
ret
This seems pretty close to optimal to me, at least without
using horizontal adds. This also triggers in lots of other
code, including SPEC.
llvm-svn: 112278
The Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 16.00.30319.01
implements parts of C++0x based on the draft standard. An old version of
the draft had a bug that makes std::pair<T1*, T2*>(something, 0) fail to
compile. This is because the template<class U, class V> pair(U&& x, V&& y)
constructor is selected, even though it later fails to implicitly convert
U and V to frist_type and second_type.
This has been fixed in n3090, but it seems that Microsoft is not going to
update msvc.
llvm-svn: 112257