This change is motivated by an upcoming change to the metadata representation
used for CFI. The indirect function call checker needs type information for
external function declarations in order to correctly generate jump table
entries for such declarations. We currently associate such type information
with declarations using a global metadata node, but I plan [1] to move all
such metadata to global object attachments.
In bitcode, metadata attachments for function declarations appear in the
global metadata block. This seems reasonable to me because I expect metadata
attachments on declarations to be uncommon. In the long term I'd also expect
this to be the case for CFI, because we'd want to use some specialized bitcode
format for this metadata that could be read as part of the ThinLTO thin-link
phase, which would mean that it would not appear in the global metadata block.
To solve the lazy loaded metadata issue I was seeing with D20147, I use the
same bitcode representation for metadata attachments for global variables as I
do for function declarations. Since there's a use case for metadata attachments
in the global metadata block, we might as well use that representation for
global variables as well, at least until we have a mechanism for lazy loading
global variables.
In the assembly format, the metadata attachments appear after the "declare"
keyword in order to avoid a parsing ambiguity.
[1] http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html
Differential Revision: http://reviews.llvm.org/D21052
llvm-svn: 273336
If a local_unnamed_addr attribute is attached to a global, the address
is known to be insignificant within the module. It is distinct from the
existing unnamed_addr attribute in that it only describes a local property
of the module rather than a global property of the symbol.
This attribute is intended to be used by the code generator and LTO to allow
the linker to decide whether the global needs to be in the symbol table. It is
possible to exclude a global from the symbol table if three things are true:
- This attribute is present on every instance of the global (which means that
the normal rule that the global must have a unique address can be broken without
being observable by the program by performing comparisons against the global's
address)
- The global has linkonce_odr linkage (which means that each linkage unit must have
its own copy of the global if it requires one, and the copy in each linkage unit
must be the same)
- It is a constant or a function (which means that the program cannot observe that
the unique-address rule has been broken by writing to the global)
Although this attribute could in principle be computed from the module
contents, LTO clients (i.e. linkers) will normally need to be able to compute
this property as part of symbol resolution, and it would be inefficient to
materialize every module just to compute it.
See:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html
for earlier discussion.
Part of the fix for PR27553.
Differential Revision: http://reviews.llvm.org/D20348
llvm-svn: 272709
r267296 used std::piecewise_construct without using
std::forward_as_tuple, and r267298 hacked it out (using an emplace_back
followed by a couple of reset() calls) because of a problem on a bot.
I'm finally circling back to call forward_as_tuple as I should have to
begin with (thanks to David Blaikie for pointing out the missing piece).
Note that this code uses emplace_back() instead of
push_back(make_pair()) because the move constructor for TrackingMDRef is
expensive (cheaper than a copy, but still expensive).
llvm-svn: 272306
Summary:
Now DISubroutineType has a 'cc' field which should be a DW_CC_ enum. If
it is present and non-zero, the backend will emit it as a
DW_AT_calling_convention attribute. On the CodeView side, we translate
it to the appropriate enum for the LF_PROCEDURE record.
I added a new LLVM vendor specific enum to the list of DWARF calling
conventions. DWARF does not appear to attempt to standardize these, so I
assume it's OK to do this until we coordinate with GCC on how to emit
vectorcall convention functions.
Reviewers: dexonsmith, majnemer, aaboud, amccarth
Subscribers: mehdi_amini, llvm-commits
Differential Revision: http://reviews.llvm.org/D21114
llvm-svn: 272197
This will be necessary to allow the global merge pass to attach
multiple debug info metadata nodes to global variables once we reverse
the edge from DIGlobalVariable to GlobalVariable.
Differential Revision: http://reviews.llvm.org/D20414
llvm-svn: 271358
This patch adds an IR, assembly and bitcode representation for metadata
attachments for globals. Future patches will port existing features to use
these new attachments.
Differential Revision: http://reviews.llvm.org/D20074
llvm-svn: 271348
When we have "Image Info Version" module flag but don't have "Class Properties"
module flag, set "Class Properties" module flag to 0, so we can correctly emit
errors when one module has the flag set and another module does not.
rdar://26469641
llvm-svn: 270791
The bitcode upgrade I added for DISubprogram in r266446 was based on the
assumption that the CU node for the subprogram was already materialized by the
time the DISubprogram is visited. This assumption may not hold true as future
versions of LLVM may decide to write out bitcode in a different order. This
patch corrects this by introducing a versioning bit next to the distinct flag to
unambiguously differentiate the new from the old record layouts.
Note for people stabilizing LLVM out-of-tree: This patch introduces a bitcode
incompatibility with llvm trunk revisions from r266446 — this commit. (But
D19987 will ensure that it degrades gracefully).
http://reviews.llvm.org/D20004
rdar://problem/26074194
llvm-svn: 268816
Summary:
With the removal of support for lazy parsing of combined index summary
records (e.g. r267344), we no longer need to include the summary record
bitcode offset in the VST entries for definitions. Change the combined
index format to be similar to the per-module index format in using value
ids to cross-reference from the summary record to the VST entry (rather
than the summary record bitcode offset to cross-reference in the other
direction).
The visible changes are:
1) Add the value id to the combined summary records
2) Remove the summary offset from the combined VST records, which has
the following effects:
- No longer need the VST_CODE_COMBINED_GVDEFENTRY record, as all
combined index VST entries now only contain the value id and
corresponding GUID.
- No longer have duplicate VST entries in the case where there are
multiple definitions of a symbol (e.g. weak/linkonce), as they all
have the same value id and GUID.
An implication of #2 above is that in order to hook up an alias to the
correct aliasee based on the value id of the aliasee recorded in the
combined index alias record, we need to scan the entries in the index
for that GUID to find the one from the same module (i.e. the case where
there are multiple entries for the aliasee). But the reader no longer
has to maintain a special map to hook up the alias/aliasee.
Reviewers: joker.eph
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D19481
llvm-svn: 267712
There's hardly any functionality change here. Instead of calling
materializeMetadata on the first call to materialize(GlobalValue*), wait
until the first one that's actually going to do something. Noticed by
inspection; I don't have a concrete case where this makes a difference.
Added an assertion in materializeMetadata to be sure this (or a future
change) doesn't delay materializeMetadata after function-level metadata.
llvm-svn: 267345
Summary:
Remove the GlobalValueInfo and change the ModuleSummaryIndex to directly
reference summary objects. The info structure was there to support lazy
parsing of the combined index summary objects, which is no longer
needed and not supported.
Reviewers: joker.eph
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D19462
llvm-svn: 267344
Add tests for some missing cases to bitcode upgrade in r267296.
- DICompositeType with an 'elements:' field, which will cause it to be
involved in a cycle after the upgrade.
- A DIDerivedType that references a class in 'extraData:'.
I updated test/Bitcode/dityperefs-3.8.ll with the missing cases and
regenerated test/Bitcode/dityperefs-3.8.ll.bc.
llvm-svn: 267332
Right now it only contains the LinkageType, but will be extended
with "hasSection", "isOptSize", "hasInlineAssembly", etc.
Differential Revision: http://reviews.llvm.org/D19404
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 267319
Summary:
As discussed in D18298, some local globals can't
be renamed/promoted (because they have a section, or because
they are referenced from inline assembly).
To be able to detect naming collision, we need to keep around
the "GUID" using their original name without taking the linkage
into account.
Reviewers: tejohnson
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D19454
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 267304
Eliminate DITypeIdentifierMap and make DITypeRef a thin wrapper around
DIType*. It is no longer legal to refer to a DICompositeType by its
'identifier:', and DIBuilder no longer retains all types with an
'identifier:' automatically.
Aside from the bitcode upgrade, this is mainly removing logic to resolve
an MDString-based reference to an actualy DIType. The commits leading
up to this have made the implicit type map in DICompileUnit's
'retainedTypes:' field superfluous.
This does not remove DITypeRef, DIScopeRef, DINodeRef, and
DITypeRefArray, or stop using them in DI-related metadata. Although as
of this commit they aren't serving a useful purpose, there are patchces
under review to reuse them for CodeView support.
The tests in LLVM were updated with deref-typerefs.sh, which is attached
to the thread "[RFC] Lazy-loading of debug info metadata":
http://lists.llvm.org/pipermail/llvm-dev/2016-April/098318.html
llvm-svn: 267296
Each reference to an unresolved MDNode is expensive, since the RAUW
support in MDNode uses a separate allocation and side map. Since
a distinct MDNode doesn't require its operands on creation (unlike
uniuqed nodes, there's no need to check for structural equivalence),
use nullptr for any of its unresolved operands. Besides reducing the
burden on MDNode maps, this can avoid allocating temporary MDNodes in
the first place.
We need some way to track operands. Invent DistinctMDOperandPlaceholder
for this purpose, which is a Metadata subclass that holds an ID and
points at its single user. DistinctMDOperandPlaceholder::replaceUseWith
is just like RAUW, but its name highlights that there is only ever
exactly one use.
There is no support for moving (or, obviously, copying) these. Move
support would be possible but expensive; leaving it unimplemented
prevents user error. In the BitcodeReader I originally considered
allocating on a BumpPtrAllocator and keeping a vector of pointers to
them, and then I realized that std::deque implements exactly this.
A couple of obvious follow-ups:
- Change ValueEnumerator to emit distinct nodes first to take more
advantage of this optimization. (How convenient... I think I might
have a couple of patches for this.)
- Change DIBuilder and its consumers (like CGDebugInfo in clang) to
use something like this when constructing debug info in the first
place.
llvm-svn: 267270
Consistently use the IsDistinct variable and start relying on it in
GET_OR_DISTINCT. This change has NFC, but prepares for using IsDistinct
to optimize the behaviour of the getMD() and getMDOrNull() helpers.
llvm-svn: 267268
The only functionality change was removing an error check from the
BitcodeReader (and an assertion from DILocation::getImpl) that is
already caught by Verifier::visitDILocation. The Verifier is a better
place for this anyway, and being inconsistent with other subclasses of
MDNode isn't serving anyone.
llvm-svn: 267267
This removes the interfaces added (and not yet complete) to support
lazy reading of summaries. This support is not expected to be needed
since we are moving to a model where the full index is only being
traversed in the thin link step, instead of the back ends.
(The second part of this that I plan to do next is remove the
GlobalValueInfo from the ModuleSummaryIndex - it was mostly needed to
support lazy parsing of summaries. The index can instead reference the
summary structures directly.)
llvm-svn: 267097
Don't use std::vector<TrackingMDRef>, since (at least in some versions
of libc++) std::vector apparently copies values on grow operations
instead of moving them. Found this when I was temporarily deleting the
copy constructor for TrackingMDRef to investigate a performance
bottleneck.
llvm-svn: 266909
Add a new method, DICompositeType::buildODRType, that will create or
mutate the DICompositeType for a given ODR identifier, and use it in
LLParser and BitcodeReader instead of DICompositeType::getODRType.
The logic is as follows:
- If there's no node, create one with the given arguments.
- Else, if the current node is a forward declaration and the new
arguments would create a definition, mutate the node to match the
new arguments.
- Else, return the old node.
This adds a missing feature supported by the current DITypeIdentifierMap
(which I'm slowly making redudant). The only remaining difference is
that the DITypeIdentifierMap has a "the-last-one-wins" rule, whereas
DICompositeType::buildODRType has a "the-first-one-wins" rule.
For now I'm leaving behind DICompositeType::getODRType since it has
obvious, low-level semantics that are convenient for unit testing.
llvm-svn: 266786
Lift the API for debug info ODR type uniquing up a layer. Instead of
clients managing the map directly on the LLVMContext, add a static
method to DICompositeType called getODRType and handle the map in the
background. Also adds DICompositeType::getODRTypeIfExists, so far just
for convenience in the unit tests.
This simplifies the logic in LLParser and BitcodeReader. Because of
argument spam there are actually a few more lines of code now; I'll see
if I come up with a reasonable way to clean that up.
llvm-svn: 266742
Tighten up the API for debug info ODR type uniquing in LLVMContext. The
only reason to allow other DIType subclasses is to make the unit tests
prettier :/.
llvm-svn: 266737
As per David's review, rename everything in the new API for ODR type
uniquing of debug info.
ensureDITypeMap => enableDebugTypeODRUniquing
destroyDITypeMap => disableDebugTypeODRUniquing
hasDITypeMap => isODRUniquingDebugTypes
llvm-svn: 266713
Rather than relying on the structural equivalence of DICompositeType to
merge type definitions, use an explicit map on the LLVMContext that
LLParser and BitcodeReader consult when constructing new nodes.
Each non-forward-declaration DICompositeType with a non-empty
'identifier:' field is stored/loaded from the type map, and the first
definiton will "win".
This map is opt-in: clients that expect ODR types from different modules
to be merged must call LLVMContext::ensureDITypeMap.
- Clients that just happen to load more than one Module in the same
LLVMContext won't magically merge types.
- Clients (like LTO) that want to continue to merge types based on ODR
identifiers should opt-in immediately.
I have updated LTOCodeGenerator.cpp, the two "linking" spots in
gold-plugin.cpp, and llvm-link (unless -disable-debug-info-type-map) to
set this.
With this in place, it will be straightforward to remove the DITypeRef
concept (i.e., referencing types by their 'identifier:' string rather
than pointing at them directly).
llvm-svn: 266549
To be able to work accurately on the reference graph when taking
decision about internalizing, promoting, renaming, etc. We need
to have the alias information explicit.
Differential Revision: http://reviews.llvm.org/D18836
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266517
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.
Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.
Motivation
----------
Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.
We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.
Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.
http://reviews.llvm.org/D19034
<rdar://problem/25256815>
llvm-svn: 266446
At the same time, fixes InstructionsTest::CastInst unittest: yes
you can leave the IR in an invalid state and exit when you don't
destroy the context (like the global one), no longer now.
This is the first part of http://reviews.llvm.org/D19094
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266379
Summary:
To be able to work accurately on the reference graph when taking decision
about internalizing, promoting, renaming, etc. We need to have the alias
information explicit.
Reviewers: tejohnson
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18836
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266214
`allocsize` is a function attribute that allows users to request that
LLVM treat arbitrary functions as allocation functions.
This patch makes LLVM accept the `allocsize` attribute, and makes
`@llvm.objectsize` recognize said attribute.
The review for this was split into two patches for ease of reviewing:
D18974 and D14933. As promised on the revisions, I'm landing both
patches as a single commit.
Differential Revision: http://reviews.llvm.org/D14933
llvm-svn: 266032
This patch add support for GCC attribute((ifunc("resolver"))) for
targets that use ELF as object file format. In general ifunc is a
special kind of function alias with type @gnu_indirect_function. Patch
for Clang http://reviews.llvm.org/D15524
Differential Revision: http://reviews.llvm.org/D15525
llvm-svn: 265667
Summary:
In the context of http://wg21.link/lwg2445 C++ uses the concept of
'stronger' ordering but doesn't define it properly. This should be fixed
in C++17 barring a small question that's still open.
The code currently plays fast and loose with the AtomicOrdering
enum. Using an enum class is one step towards tightening things. I later
also want to tighten related enums, such as clang's
AtomicOrderingKind (which should be shared with LLVM as a 'C++ ABI'
enum).
This change touches a few lines of code which can be improved later, I'd
like to keep it as NFC for now as it's already quite complex. I have
related changes for clang.
As a follow-up I'll add:
bool operator<(AtomicOrdering, AtomicOrdering) = delete;
bool operator>(AtomicOrdering, AtomicOrdering) = delete;
bool operator<=(AtomicOrdering, AtomicOrdering) = delete;
bool operator>=(AtomicOrdering, AtomicOrdering) = delete;
This is separate so that clang and LLVM changes don't need to be in sync.
Reviewers: jyknight, reames
Subscribers: jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D18775
llvm-svn: 265602