The previous names were both misleading (the MachineLegalizer actually
contained the info tables) and inconsistent with the selector & translator (in
having a "Machine") prefix. This should make everything sensible again.
The only functional change is the name of a couple of command-line options.
llvm-svn: 284287
Mostly this just means changing the triple from aarch64-apple-ios to the generic
aarch64--. Only one test needs more significant changes, but GlobalISel already
does the right thing so it's ok to just change the checks.
Differential Revision: https://reviews.llvm.org/D25532
llvm-svn: 284223
It was only really there as a sentinel when instructions had to have precisely
one type. Now that registers are typed, each register really has to have a type
that is sized.
llvm-svn: 281599
Otherwise everything that needs to work out what size they are has to keep a
DataLayout handy, which is a bit silly and very annoying.
llvm-svn: 281597
Now that MachineBasicBlock::reverse_instr_iterator knows when it's at
the end (since r281168 and r281170), implement
MachineBasicBlock::reverse_iterator directly on top of an
ilist::reverse_iterator by adding an IsReverse template parameter to
MachineInstrBundleIterator. This replaces another hard-to-reason-about
use of std::reverse_iterator on list iterators, matching the changes for
ilist::reverse_iterator from r280032 (see the "out of scope" section at
the end of that commit message). MachineBasicBlock::reverse_iterator
now has a handle to the current node and has obvious invalidation
semantics.
r280032 has a more detailed explanation of how list-style reverse
iterators (invalidated when the pointed-at node is deleted) are
different from vector-style reverse iterators like std::reverse_iterator
(invalidated on every operation). A great motivating example is this
commit's changes to lib/CodeGen/DeadMachineInstructionElim.cpp.
Note: If your out-of-tree backend deletes instructions while iterating
on a MachineBasicBlock::reverse_iterator or converts between
MachineBasicBlock::iterator and MachineBasicBlock::reverse_iterator,
you'll need to update your code in similar ways to r280032. The
following table might help:
[Old] ==> [New]
delete &*RI, RE = end() delete &*RI++
RI->erase(), RE = end() RI++->erase()
reverse_iterator(I) std::prev(I).getReverse()
reverse_iterator(I) ++I.getReverse()
--reverse_iterator(I) I.getReverse()
reverse_iterator(std::next(I)) I.getReverse()
RI.base() std::prev(RI).getReverse()
RI.base() ++RI.getReverse()
--RI.base() RI.getReverse()
std::next(RI).base() RI.getReverse()
(For more details, have a look at r280032.)
llvm-svn: 281172
Add an assertion to the MachineInstrBundleIterator from instr_iterator
that the underlying iterator is valid. This is possible know that we
can check ilist_node::isSentinel (since r281168), and is consistent with
the constructors from MachineInstr* and MachineInstr&.
Avoiding the new assertion in operator== and operator!= requires four
(!!!!) new overloads each.
(As an aside, I'm strongly in favour of:
- making the conversion from instr_iterator explicit;
- making the conversion from pointer explicit;
- making the conversion from reference explicit; and
- removing all the extra overloads of operator== and operator!= except
const_instr_iterator.
I'm not signing up for that at this point, but being clear about when
something is an MachineInstr-iterator (possibly instr_end()) vs
MachineInstr-bundle-iterator (possibly end()) vs MachineInstr* (possibly
nullptr) vs MachineInstr& (known valid) would surely make code
cleaner... and it would remove a ton of boilerplate from
MachineInstrBundleIterator operators.)
llvm-svn: 281170
This is a prep commit before fixing MachineBasicBlock::reverse_iterator
invalidation semantics, ala r281167 for ilist::reverse_iterator. This
changes MachineBasicBlock::Instructions to track which node is the
sentinel regardless of LLVM_ENABLE_ABI_BREAKING_CHECKS.
There's almost no functionality change (aside from ABI). However, in
the rare configuration:
#if !defined(NDEBUG) && !defined(LLVM_ENABLE_ABI_BREAKING_CHECKS)
the isKnownSentinel() assertions in ilist_iterator<>::operator* suddenly
have teeth for MachineInstr. If these assertions start firing for your
out-of-tree backend, have a look at the suggestions in the commit
message for r279314, and at some of the commits leading up to it that
avoid dereferencing the end() iterator.
llvm-svn: 281168
Instead of putting all possible requests into a single table, we can perform
the extremely dense lookup based on opcode and type-index in constant time
using multi-dimensional array-like things.
This roughly halves the time spent doing legalization, which was dominated by
queries against the Actions table.
llvm-svn: 280011
Instructions like G_ICMP have multiple types that may need to be legalized (the
boolean output and nearly arbitrary inputs in this case). So the legalizer must
be capable of deciding what to do for each of them separately.
llvm-svn: 279554
Remove all ilist_iterator to pointer casts. There were two reasons for
casts:
- Checking for an uninitialized (i.e., null) iterator. I added
MachineInstrBundleIterator::isValid() to check for that case.
- Comparing an iterator against the underlying pointer value while
avoiding converting the pointer value to an iterator. This is
occasionally necessary in MachineInstrBundleIterator, since there is
an assertion in the constructors that the underlying MachineInstr is
not bundled (but we don't care about that if we're just checking for
pointer equality).
To support the latter case, I rewrote the == and != operators for
ilist_iterator and MachineInstrBundleIterator.
- The implicit constructors now use enable_if to exclude
const-iterator => non-const-iterator conversions from overload
resolution (previously it was a compiler error on instantiation, now
it's SFINAE).
- The == and != operators are now global (friends), and are not
templated.
- MachineInstrBundleIterator has overloads to compare against both
const_pointer and const_reference. This avoids the implicit
conversions to MachineInstrBundleIterator that assert, instead just
checking the address (and I added unit tests to confirm this).
Notably, the only remaining uses of ilist_iterator::getNodePtrUnchecked
are in ilist.h, and no code outside of ilist*.h directly relies on this
UB end-iterator-to-pointer conversion anymore. It's still needed for
ilist_*sentinel_traits, but I'll clean that up soon.
llvm-svn: 278478
When coming from an IR label type, we set a 0 NumElements, but not
when constructing an LLT using unsized(), causing comparisons to fail.
Pick one variant and fix the other.
llvm-svn: 277161
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
llvm-svn: 258861
Replace the `std::vector<>` for `DIE::Children` with an intrusively
linked list. This is a strict memory improvement: it requires no
auxiliary storage, and reduces `sizeof(DIE)` by one pointer. It also
factors out the DIE-related malloc traffic.
This drops llc memory usage from 735 MB down to 718 MB, or ~2.3%.
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
llvm-svn: 240736
Change `DIE::Values` to a singly linked list, where each node is
allocated on a `BumpPtrAllocator`. In order to support `push_back()`,
the list is circular, and points at the tail element instead of the
head. I abstracted the core list logic out to `IntrusiveBackList` so
that it can be reused for `DIE::Children`, which also cares about
`push_back()`.
This drops llc memory usage from 799 MB down to 735 MB, about 8%.
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
llvm-svn: 240733
This reverts commit r238350, effectively reapplying r238349 after fixing
(all?) the problems, all somehow related to how I was using
`AlignedArrayCharUnion<>` inside `DIEValue`:
- MSVC can only handle `sizeof()` on types, not values. Change the
assert.
- GCC doesn't know the `is_trivially_copyable` type trait. Instead of
asserting it, add destructors.
- Call placement new even when constructing POD (i.e., the pointers).
- Instead of copying the char buffer, copy the casted classes.
I've left in a couple of `static_assert`s that I think both MSVC and GCC
know how to handle. If the bots disagree with me, I'll remove them.
- Check that the constructed type is either standard layout or a
pointer. This protects against a programming error: we really want
the "small" `DIEValue`s to be small and simple, so don't
accidentally change them not to be.
- Similarly, check that the size of the buffer is no bigger than a
`uint64_t` or a pointer. (I thought checking against
`sizeof(uint64_t)` would be good enough, but Chandler suggested that
pointers might sometimes be bigger than that in the context of
sanitizers.)
I've also committed r238359 in the meantime, which introduces a
DIEValue.def to simplify dispatching between the various types (thanks
to a review comment by David Blaikie). Without that, this commit would
be almost unintelligible.
Here's the original commit message:
--
Change `DIEValue` to be stored/passed/etc. by value, instead of
reference. It's now a discriminated union, with a `Val` field storing
the actual type. The classes that used to inherit from `DIEValue` no
longer do. There are two categories of these:
- Small values fit in a single pointer and are stored by value.
- Large values require auxiliary storage, and are stored by reference.
The only non-mechanical change is to tools/dsymutil/DwarfLinker.cpp. It
was relying on `DIEInteger`s being passed around by reference, so I
replaced that assumption with a `PatchLocation` type that stores a safe
reference to where the `DIEInteger` lives instead.
This commit causes a temporary regression in memory usage, since I've
left merging `DIEAbbrevData` into `DIEValue` for a follow-up commit. I
measured an increase from 845 MB to 879 MB, around 3.9%. The follow-up
drops it lower than the starting point, and I've only recently brought
the memory this low anyway, so I'm committing these changes separately
to keep them incremental. (I also considered swapping the commits, but
the other one first would cause a lot more code churn.)
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
--
llvm-svn: 238362
This reverts commit r238349, since it caused some errors on bots:
- std::is_trivially_copyable isn't available until GCC 5.0.
- It was complaining about strict aliasing with my use of
ArrayCharUnion.
llvm-svn: 238350
Change `DIEValue` to be stored/passed/etc. by value, instead of
reference. It's now a discriminated union, with a `Val` field storing
the actual type. The classes that used to inherit from `DIEValue` no
longer do. There are two categories of these:
- Small values fit in a single pointer and are stored by value.
- Large values require auxiliary storage, and are stored by reference.
The only non-mechanical change is to tools/dsymutil/DwarfLinker.cpp. It
was relying on `DIEInteger`s being passed around by reference, so I
replaced that assumption with a `PatchLocation` type that stores a safe
reference to where the `DIEInteger` lives instead.
This commit causes a temporary regression in memory usage, since I've
left merging `DIEAbbrevData` into `DIEValue` for a follow-up commit. I
measured an increase from 845 MB to 879 MB, around 3.9%. The follow-up
drops it lower than the starting point, and I've only recently brought
the memory this low anyway, so I'm committing these changes separately
to keep them incremental. (I also considered swapping the commits, but
the other one first would cause a lot more code churn.)
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
llvm-svn: 238349
Expose the `DwarfStringPool` entry in a header, and store a pointer to
it directly in `DIEString`. Instead of choosing at creation time how to
emit it, use the `dwarf::Form` to determine that at emission time.
Besides avoiding the other `DIEValue`, this shaves two pointers off of
`DIEString`; the data is now a single pointer. This is a nice cleanup
on its own -- and drops memory usage from 861 MB down to 853 MB, around
0.9% -- but it's also preparation for passing `DIEValue`s by value.
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
llvm-svn: 238117
utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
llvm-svn: 225974
dsymutil would like to use all the AsmPrinter/MCStreamer infrastructure
to stream out the DWARF. In order to do so, it will reuse the DIE object
and so this header needs to be public.
The interface exposed here has some corners that cannot be used without a
DwarfDebug object, but clients that want to stream Dwarf can just avoid
these.
Differential Revision: http://reviews.llvm.org/D6695
llvm-svn: 225208
This should reduce the chance of memory leaks like those fixed in
r207240.
There's still some unclear ownership of DIEs happening in DwarfDebug.
Pushing unique_ptr and references through more APIs should help expose
the cases where ownership is a bit fuzzy.
llvm-svn: 207263
passing down an AsmPrinter instance so we could compute the size of
the block which could be target specific. All of the test cases in
the unittest don't have any target specific data so we can use a NULL
AsmPrinter there. This also depends upon block data being added as
integers.
We can now hash the entire fission-cu.ll compile unit so turn the
flag on there with the hash value.
llvm-svn: 201752
algorithm. Sink the 'A' + Attribute hash into each form so we don't
have to check valid forms before deciding whether or not we're going
to hash which will let the default be to return without doing anything.
llvm-svn: 200571
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
llvm-svn: 198685
Includes a test case/FIXME demonstrating a bug/limitation in pointer to
member hashing. To be honest I'm not sure why we don't just always use
summary hashing for referenced types... but perhaps I'm missing
something.
llvm-svn: 193175
This uses a map, keeping the type DIE numbering separate from the DIEs
themselves - alternatively we could do things the way GCC does if we
want to add an integer to the DIE type to record the numbering there.
llvm-svn: 193105