LLVM style code can be simplified to avoid the duplication of logic
related to printing dynamic relocations.
Differential revision: https://reviews.llvm.org/D87089
Currently we have 2 large `printDynamicRelocations` methods that
have a very similar code for GNU/LLVM styles.
This patch removes the duplication and renames them to `printDynamicReloc`
for consistency.
Differential revision: https://reviews.llvm.org/D87087
It removes templating for Elf_Rel[a] handling that we
introduced earlier and introduces a helper class instead.
It was briefly discussed in D87087, which showed,
why having templates is probably not ideal for the generalization
of dumpers code.
Differential revision: https://reviews.llvm.org/D87141
TPCDynamicLibrarySearchGenerator was generating errors on missing
symbols, but that doesn't fit the DefinitionGenerator contract: A symbol
that isn't generated by a particular generator should not cause an
error.
This commit fixes the error by using SymbolLookupFlags::WeaklyReferencedSymbol
for all elements of the lookup, and switches llvm-jitlink to use
TPCDynamicLibrarySearchGenerator.
I recently came across a MachO with multiple sections of the same name but
different segments. We should emit the segment name alongside the section name
for MachO's.
Differential Revision: https://reviews.llvm.org/D87119
We have the `RelSymbol<ELFT>` struct and can use it instead
of `std::pair<const Elf_Sym *, std::string>` in a few methods.
This is a bit cleaner.
Differential revision: https://reviews.llvm.org/D87092
Instead of referring to stack sizes sections only by name, we can add
section indexes and types to warnings reported.
Differential revision: https://reviews.llvm.org/D86934
We have 2 DumpStyles currently:
`class GNUStyle : public DumpStyle<ELFT>` and `class LLVMStyle : public DumpStyle<ELFT>`.
The problem of `DumpStyle` interface is that almost for each method
we provide `const ELFFile<ELFT> *` as argument. But in fact each of
dump styles keeps `ELFDumper<ELFT> *Dumper` which can be used to get an object from.
But since we use the `Obj` too often, I've decided to introduce a one more reference member
instead of reading it from the `Dumper` each time:
`const ELFFile<ELFT> &Obj;` This is kind of similar to `FileName` member which we have already:
it is also used to store a the file name which can be read from `Dumper->getElfObject()->getFileName()`.
I had to adjust the code which previously worked with a pointer to an object
and now works with a reference.
In a follow-up I am going to try to get rid of `const ELFObjectFile<ELFT>` arguments
which are still passed to a set of functions.
Differential revision: https://reviews.llvm.org/D87040
Add support in llvm-readobj for displaying them and support in the
asm parsser, AArch64TargetStreamer and MCWin64EH for emitting them.
The directives for the remaining basic opcodes have names that
match the opcode in the documentation.
The directives for custom stack cases, that are named
MSFT_OP_TRAP_FRAME, MSFT_OP_MACHINE_FRAME, MSFT_OP_CONTEXT
and MSFT_OP_CLEAR_UNWOUND_TO_CALL, are given matching assembler
directive names that fit into the rest of the opcode naming;
.seh_trap_frame, .seh_context, .seh_clear_unwound_to_call
The opcode MSFT_OP_MACHINE_FRAME is mapped to the existing
opecode enum UOP_PushMachFrame that is used on x86_64, and also
uses the corresponding existing x86_64 directive name
.seh_pushframe.
Differential Revision: https://reviews.llvm.org/D86889
We have Error.cpp/.h which contains some code for working with error codes.
In fact we use Error/Expected<> almost everywhere already and we can get rid
of these files.
Note: a few places in the code used readobj specific error codes,
e.g. `return readobj_error::unknown_symbol`. But these codes are never really used,
i.e. the code checks the fact of a success/error call only.
So I've changes them to `return inconvertibleErrorCode()` for now.
It seems that these places probably should be converted to use `Error`/`Expected<>`.
Differential revision: https://reviews.llvm.org/D86772
This replaces `reportError` calls with `reportUniqueWarning` and improves testing
for the code that is related to stack sizes dumping.
Differential revision: https://reviews.llvm.org/D86783
This patch makes the debug_str section optional. When the debug_str
section exists but doesn't contain anything, yaml2obj will emit a
section header for it.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D86860
Currently replaceBranchTerminator/removeUninterestingBBsFromSwitch
always creates `ret void` instructions if no successor is in the chunk.
This results in invalid IR for functions with non-void return types,
which makes those reductions unfeasible. Instead, create `ret ty undef`
for functions with non-void return types.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D86849
Imagine we have an archive that has 3 objects in the following order:
<valid known object>,<unknown object> and <valid known object>.
Currently llvm-readelf/obj report an error and stops dumping in the middle.
This patch changes the error reported to warning.
Differential revision: https://reviews.llvm.org/D86771
althought the interstingness test should usually fail when the module is invalid
this changes reduces the frequency at which llvm-reduce generate invalid IR.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D86404
We have a few helper functions like the following:
```
std::error_code create*Dumper(...)
```
In fact we do not need or want to use `std::error_code` and the code
can be simpler if we just return `std::unique_ptr<ObjDumper>`.
This patch does this change and refines the signature of `createDumper`
as well.
Differential revision: https://reviews.llvm.org/D86718
Some reduction passes may create invalid IR. I am not aware of any use
case where we would like to proceed reducing invalid IR. Various utils
used here, including CloneModule, assume the module to clone is valid
and crash otherwise.
Ideally, no reduction pass would create invalid IR, but some currently
do. ReduceInstructions can be fixed relatively easily (D86210), but
others are harder. For example, ReduceBasicBlocks may remove result in
invalid PHI nodes.
For now, skip the chunks. If we get to the point where all reduction
passes result in valid IR, we may want to turn this into an assertion.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D86212
This patch optionally replaces the CRT allocator (i.e., malloc and free) with rpmalloc (mixed public domain licence/MIT licence) or snmalloc (MIT licence) or mimalloc (MIT licence). Please note that the source code for these allocators must be available outside of LLVM's tree.
To enable, use `cmake ... -DLLVM_INTEGRATED_CRT_ALLOC=D:/git/rpmalloc -DLLVM_USE_CRT_RELEASE=MT` where `D:/git/rpmalloc` has already been git clone'd from `https://github.com/mjansson/rpmalloc`. The same applies to snmalloc and mimalloc.
When enabled, the allocator will be embeded (statically linked) into the LLVM tools & libraries. This currently only works with the static CRT (/MT), although using the dynamic CRT (/MD) could potentially work as well in the future.
When enabled, this changes the memory stack from:
new/delete -> MS VC++ CRT malloc/free -> HeapAlloc -> VirtualAlloc
to:
new/delete -> {rpmalloc|snmalloc|mimalloc} -> VirtualAlloc
The goal of this patch is to bypass the application's global heap - which is thread-safe thus inducing locking - and instead take advantage of a modern lock-free, thread cache, allocator. On a 6-core Xeon Skylake we observe a 2.5x decrease in execution time when linking a large scale application with LLD and ThinLTO (12 min 20 sec -> 5 min 34 sec), when all hardware threads are being used (using LLD's flag /opt:lldltojobs=all). On a dual 36-core Xeon Skylake with all hardware threads used, we observe a 24x decrease in execution time (1 h 2 min -> 2 min 38 sec) when linking a large application with LLD and ThinLTO. Clang build times also see a decrease in the range 5-10% depending on the configuration.
Differential Revision: https://reviews.llvm.org/D71786
For `ld64` which uses legacy LTOCodeGenerator, it relies on
writeMergedModule to perform `ld -r` (generates a linked object file).
If all the inputs to `ld -r` is fullLTO bitcode, `ld64` will linked the
bitcode module, internalize all the symbols and write out another
fullLTO bitcode object file. This bitcode file doesn't have all the
bitcode inputs and it should not have LTOPostLink module flag. It will
also cause error when this bitcode object file is linked with other LTO
object file.
Fix the issue by not applying LTOPostLink flag during writeMergedModule
function. The flag should only be added when all the bitcode are linked
and ready to be optimized.
rdar://problem/58462798
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D84789
This patch makes the unit_length and header_length fields of line tables
optional. yaml2obj is able to infer them for us.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D86590
We have no tests for OS/ABI values specific to
EM_TI_C6000, ELFOSABI_AMDGPU_MESA3D and ELFOSABI_ARM machines.
Also, related arrays in the code are not grouped together.
(That is why such testing was missed I guess).
The patch fixes that all.
Differential revision: https://reviews.llvm.org/D86341
This removes Error.cpp/.h files from obj2yaml.
These files are not needed because we are
using `Error`s instead of error codes widely and do
not need a logic related to obj2yaml specific
error codes anymore.
I had to adjust just a few lines of tool's code
to remove remaining dependencies.
Differential revision: https://reviews.llvm.org/D86536
llvm-readobj crashes when `-S --section-symbols` is used
on an object that has no symbol table.
The patch fixes it.
Differential revision: https://reviews.llvm.org/D86520
A Mach-O universal binary may contain bitcode as a slice.
This diff adds proper handling of such binaries to llvm-lipo.
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D85740
including printing them.
Reviewers: andreadb, lebedev.ri
Differential Review: https://reviews.llvm.org/D86390
Introduces a new base class "InstructionView" that such views derive from.
Other views still use the "View" base class.
Currently, when a program header type is unknown, we dont print anything:
```
ProgramHeader {
Type: (0x60000000)
```
With this patch the output will be:
```
ProgramHeader {
Type: Unknown (0x60000000)
```
It was discussed in D85526 and consistent with what we print for
'--sections' already, e.g.:
```
Section {
Name: .sec
Type: Unknown (0x7FFFFFFF)
}
```
Differential revision: https://reviews.llvm.org/D86213
This allows to get rid of "Invalid data was encountered while parsing the file"
error reported in cases when sh_size/sh_offset of sections are broken.
Differential revision: https://reviews.llvm.org/D86451
Fixes PR46575.
Bump statistics version to 6.
Without this patch, for a variable described with a location list the stat
'sum_all_variables(#bytes in parent scope covered by DW_AT_location)' is
calculated by summing all bytes covered by the location ranges in the list and
capping the result to the number of bytes in the parent scope. With the patch,
only bytes which overlap with the parent DIE scope address ranges contribute to
the stat. A new stat 'sum_all_variables(#bytes in any scope covered by
DW_AT_location)' has been added which displays the total bytes covered when
ignoring scopes.
The -V option in cctools' libtool prints out the version number and
performs any specified operation. Add this option to LLVM's version.
cctools is more forgiving of invalid command lines when -V is specified,
but I think it's better to give errors instead of silently producing no
output.
Unfortunately, when -V is present, options that would otherwise be
required aren't anymore, so we need to perform some manual argument
validation.
Reviewed By: alexshap
Differential Revision: https://reviews.llvm.org/D86359
Removing terminators will result in invalid IR, making further
reductions pointless. I do not think there is any valid use case where
we actually want to create invalid IR as part of a reduction.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D86210
so that the user does not have to pipe the output to `jq` or `python -m json.tool`.
This change makes testing more convenient because `-NEXT` patterns can be used.
The "prettify by default" is a good tradeoff to make. The output size increases a bit.
Differential Revision: https://reviews.llvm.org/D86318
This helps with both debugging llvm-reduce and sometimes getting usefull result even if llvm-reduce crashes
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D85996
The legacy PM alias analysis pipeline by default includes basic-aa.
When running `opt -foo-pass` under the NPM and -disable-basic-aa is not
specified, use basic-aa.
This decreases the number of check-llvm failures under NPM from 913 to 752.
Reviewed By: ychen, asbirlea
Differential Revision: https://reviews.llvm.org/D86167
The code that reports "PT_DYNAMIC segment offset + size exceeds the size of the file"
has an issue: it is possible to bypass the validation by overflowing the size + offset result.
Differential revision: https://reviews.llvm.org/D85519
The original commit (7ff0ace96db9164dcde232c36cab6519ea4fce8) was causing
build failure and was reverted in 6d242a73264ef1e3e128547f00e0fe2d20d3ada0
==================== Original Commit Message ====================
This patch adds support for referencing different abbrev tables. We use
'ID' to distinguish abbrev tables and use 'AbbrevTableID' to explicitly
assign an abbrev table to compilation units.
The syntax is:
```
debug_abbrev:
- ID: 0
Table:
...
- ID: 1
Table:
...
debug_info:
- ...
AbbrevTableID: 1 ## Reference the second abbrev table.
- ...
AbbrevTableID: 0 ## Reference the first abbrev table.
```
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D83116
Currently we have `checkDRI` and two `createDRIFrom` methods which
are used to create `DynRegionInfo` objects.
And we have an issue: constructions like:
`ObjF->getELFFile()->base() + P->p_offset`
that are used in `createDRIFrom` functions might overflow.
I had to revert `D85519` which triggered such UBSan failure.
This NFC, simplifies and generalizes how we create `DynRegionInfo` objects.
It will allow us to introduce more/better validation checks in a single place.
It also will allow to change `createDRI` to return `Expected<>` so
that we will be able to stop using the `reportError`, which
is used inside currently, and have a warning instead.
Differential revision: https://reviews.llvm.org/D86297
This patch adds support for referencing different abbrev tables. We use
'ID' to distinguish abbrev tables and use 'AbbrevTableID' to explicitly
assign an abbrev table to compilation units.
The syntax is:
```
debug_abbrev:
- ID: 0
Table:
...
- ID: 1
Table:
...
debug_info:
- ...
AbbrevTableID: 1 ## Reference the second abbrev table.
- ...
AbbrevTableID: 0 ## Reference the first abbrev table.
```
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D83116
This patch adds support for emitting multiple abbrev tables. Currently,
compilation units will always reference the first abbrev table.
Reviewed By: jhenderson, labath
Differential Revision: https://reviews.llvm.org/D86194