1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-24 21:42:54 +02:00
Commit Graph

303 Commits

Author SHA1 Message Date
Wei Mi
a9851977ba This patch is to fix PR26529 caused by r259736.
IndVarSimplify assumes scAddRecExpr to be expanded in literal form instead of
canonical form by calling disableCanonicalMode after it creates SCEVExpander.
When CanonicalMode is disabled, SCEVExpander::expand should always return PHI
node for scAddRecExpr. r259736 broke the assumption.

The fix is to let SCEVExpander::expand skip the reuse Value logic if
CanonicalMode is false.

In addition, Besides IndVarSimplify, LSR pass also calls disableCanonicalMode
before doing rewrite. We can remove the original check of LSRMode in reuse
Value logic and use CanonicalMode instead.

llvm-svn: 260174
2016-02-09 00:07:08 +00:00
Wei Mi
00d0d9c981 [SCEV] Try to reuse existing value during SCEV expansion
Current SCEV expansion will expand SCEV as a sequence of operations
and doesn't utilize the value already existed. This will introduce
redundent computation which may not be cleaned up throughly by
following optimizations.

This patch introduces an ExprValueMap which is a map from SCEV to the
set of equal values with the same SCEV. When a SCEV is expanded, the
set of values is checked and reused whenever possible before generating
a sequence of operations.

The original commit triggered regressions in Polly tests. The regressions
exposed two problems which have been fixed in current version.

1. Polly will generate a new function based on the old one. To generate an
instruction for the new function, it builds SCEV for the old instruction,
applies some tranformation on the SCEV generated, then expands the transformed
SCEV and insert the expanded value into new function. Because SCEV expansion
may reuse value cached in ExprValueMap, the value in old function may be
inserted into new function, which is wrong.
   In SCEVExpander::expand, there is a logic to check the cached value to
be used should dominate the insertion point. However, for the above
case, the check always passes. That is because the insertion point is
in a new function, which is unreachable from the old function. However
for unreachable node, DominatorTreeBase::dominates thinks it will be
dominated by any other node.
   The fix is to simply add a check that the cached value to be used in
expansion should be in the same function as the insertion point instruction.

2. When the SCEV is of scConstant type, expanding it directly is cheaper than
reusing a normal value cached. Although in the cached value set in ExprValueMap,
there is a Constant type value, but it is not easy to find it out -- the cached
Value set is not sorted according to the potential cost. Existing reuse logic
in SCEVExpander::expand simply chooses the first legal element from the cached
value set.
   The fix is that when the SCEV is of scConstant type, don't try the reuse
logic. simply expand it.

Differential Revision: http://reviews.llvm.org/D12090

llvm-svn: 259736
2016-02-04 01:27:38 +00:00
Wei Mi
1ef051b016 Revert r259662, which caused regressions on polly tests.
llvm-svn: 259675
2016-02-03 18:05:57 +00:00
Wei Mi
4fc93e70ac [SCEV] Try to reuse existing value during SCEV expansion
Current SCEV expansion will expand SCEV as a sequence of operations
and doesn't utilize the value already existed. This will introduce
redundent computation which may not be cleaned up throughly by
following optimizations.

This patch introduces an ExprValueMap which is a map from SCEV to the
set of equal values with the same SCEV. When a SCEV is expanded, the
set of values is checked and reused whenever possible before generating
a sequence of operations.

Differential Revision: http://reviews.llvm.org/D12090

llvm-svn: 259662
2016-02-03 17:05:12 +00:00
Pete Cooper
b753649d63 Revert "Change memcpy/memset/memmove to have dest and source alignments."
This reverts commit r253511.

This likely broke the bots in
http://lab.llvm.org:8011/builders/clang-ppc64-elf-linux2/builds/20202
http://bb.pgr.jp/builders/clang-3stage-i686-linux/builds/3787

llvm-svn: 253543
2015-11-19 05:56:52 +00:00
Pete Cooper
aca4c5cdc6 Change memcpy/memset/memmove to have dest and source alignments.
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html

These intrinsics currently have an explicit alignment argument which is
required to be a constant integer.  It represents the alignment of the
source and dest, and so must be the minimum of those.

This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments.  The alignment
argument itself is removed.

There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe.  For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.

For example, code which used to read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)

For out of tree owners, I was able to strip alignment from calls using sed by replacing:
  (call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
  $1i1 false)

and similarly for memmove and memcpy.

I then added back in alignment to test cases which needed it.

A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.

In IRBuilder itself, a new argument was added.  Instead of calling:
  CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
  CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)

There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool.  This is to prevent isVolatile here from passing its default
parameter to the source alignment.

Note, changes in future can now be made to codegen.  I didn't change anything here, but this
change should enable better memcpy code sequences.

Reviewed by Hal Finkel.

llvm-svn: 253511
2015-11-18 22:17:24 +00:00
Sanjoy Das
f81bfefe0b [SCEV] Fix PR25369
Have `getConstantEvolutionLoopExitValue` work correctly with multiple
entry loops.

As far as I can tell, `getConstantEvolutionLoopExitValue` never did the
right thing for multiple entry loops; and before r249712 it would
silently return an incorrect answer.  r249712 changed SCEV to fail an
assert on a multiple entry loop, and this change fixes the underlying
issue.

llvm-svn: 251770
2015-11-02 02:06:01 +00:00
Sanjoy Das
367ed95f05 [SCEV] Don't create SCEV expressions that break LCSSA
Prevent `createNodeFromSelectLikePHI` from creating SCEV expressions
that break LCSSA.

A better fix for the same issue is to teach SCEVExpander to not break
LCSSA by inserting PHI nodes at appropriate places.  That's planned for
the future.

Fixes PR25360.

llvm-svn: 251756
2015-10-31 23:21:40 +00:00
Silviu Baranga
a85fe6b03a [SCEV] Generalize the SCEV algorithm for creating expressions for PHI nodes
Summary:
When forming expressions for phi nodes having an incoming value from
outside the loop A and a value coming from the previous iteration B
we were forming an AddRec if:
  - B was an AddRec
  - the value A was equal to the value for B at iteration -1 (or equal
    to the value of B shifted by one iteration, at iteration 0)

In this case, we were computing the expression to be the expression of
B, shifted by one iteration.

This changes generalizes the logic above by removing the restriction that
B needs to be an AddRec. For this we introduce two expression rewriters
that allow us to
  - shift an expression by one iteration
  - get the value of an expression at iteration 0

This allows us to get SCEV expressions for PHI nodes when these expressions
are not AddRecExprs.

Reviewers: sanjoy

Subscribers: llvm-commits, sanjoy

Differential Revision: http://reviews.llvm.org/D14175

llvm-svn: 251700
2015-10-30 15:02:28 +00:00
Sanjoy Das
5aa51e5247 [SCEV] Compute max backedge count for loops with "shift ivs"
This teaches SCEV to compute //max// backedge taken counts for loops
like

    for (int i = k; i != 0; i >>>= 1)
      whatever();

SCEV yet cannot represent the exact backedge count for these loops, and
this patch does not change that.  This is really geared towards teaching
SCEV that loops like the above are *not* infinite.

llvm-svn: 251558
2015-10-28 21:27:14 +00:00
Sanjoy Das
20577e65c0 [SCEV] Commute zero extends through <nuw> additions
llvm-svn: 251052
2015-10-22 19:57:38 +00:00
Sanjoy Das
2c0387ed8b [SCEV] Commute sign extends through nsw additions
Summary: Depends on D13613.

Reviewers: atrick, hfinkel, reames, nlewycky

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D13685

llvm-svn: 251049
2015-10-22 19:57:25 +00:00
Sanjoy Das
fd03ccdaff [SCEV] Mark AddExprs as nsw or nuw if legal
Summary:
This uses `ScalarEvolution::getRange` and not potentially control
dependent `nsw` and `nuw` bits on the arithmetic instruction.

Reviewers: atrick, hfinkel, nlewycky

Subscribers: llvm-commits, sanjoy

Differential Revision: http://reviews.llvm.org/D13613

llvm-svn: 251048
2015-10-22 19:57:19 +00:00
Mehdi Amini
5e51102a9d Revert "Revert "This patch builds on top of D13378 to handle constant condition.""
This reverts commit r249528 and reapply r249431. The fix for the
fallout has been commited in r249575.

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 249581
2015-10-07 18:14:25 +00:00
James Molloy
0e044652c2 Revert "This patch builds on top of D13378 to handle constant condition."
This reverts commit r249431. This caused failures in sqlite3: http://lab.llvm.org:8011/builders/clang-native-arm-lnt/builds/14453

llvm-svn: 249528
2015-10-07 09:03:34 +00:00
Mehdi Amini
92479849da This patch builds on top of D13378 to handle constant condition.
With this patch, clang -O3 optimizes correctly providing > 1000x speedup on this artificial benchmark):

for (a=0; a<n; a++)
    for (b=0; b<n; b++)
        for (c=0; c<n; c++)
            for (d=0; d<n; d++)
                for (e=0; e<n; e++)
                    for (f=0; f<n; f++)
                        x++;
From test-suite/SingleSource/Benchmarks/Shootout/nestedloop.c

Reviewers: sanjoyd

Differential Revision: http://reviews.llvm.org/D13390

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 249431
2015-10-06 17:19:20 +00:00
Sanjoy Das
79fa7ea8a7 [SCEV] Recognize simple br-phi patterns
Summary:
Teach SCEV to match patterns like

```
  br %cond, label %left, label %right
 left:
  br label %merge
 right:
  br label %merge
 merge:
  V = phi [ %x, %left ], [ %y, %right ]
```

as "select %cond, %x, %y".  Before this SCEV would match PHI nodes
exclusively to add recurrences.

This addresses PR25005.

Reviewers: joker.eph, joker-eph, atrick

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D13378

llvm-svn: 249211
2015-10-02 23:09:44 +00:00
Sanjoy Das
a43b643107 [SCEV] Reapply 'Teach isLoopBackedgeGuardedByCond to exploit trip counts'
Summary:
If the trip count of a specific backedge is `N`, then we know that
backedge is effectively guarded by the condition `{0,+,1} u< N`.  This
change teaches SCEV to use this condition to prove things in
`isLoopBackedgeGuardedByCond`.

Depends on D12948
Depends on D12949

The original checkin, r248608 had to be backed out due to an issue with
a ObjCXX unit test.  That issue is now fixed, so re-landing.

Reviewers: atrick, reames, majnemer, hfinkel

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D12950

llvm-svn: 248638
2015-09-25 23:53:50 +00:00
Sanjoy Das
3c388c3b77 Revert two SCEV changes that caused test failures in clang.
r248606: "[SCEV] Exploit A < B => (A+K) < (B+K) when possible"
r248608: "[SCEV] Teach isLoopBackedgeGuardedByCond to exploit trip counts."
llvm-svn: 248614
2015-09-25 21:16:50 +00:00
Sanjoy Das
330be54a7e [SCEV] Teach isLoopBackedgeGuardedByCond to exploit trip counts.
Summary:
If the trip count of a specific backedge is `N`, then we know that
backedge is effectively guarded by the condition `{0,+,1} u< N`.  This
change teaches SCEV to use this condition to prove things in
`isLoopBackedgeGuardedByCond`.

Depends on D12948
Depends on D12949

Reviewers: atrick, reames, majnemer, hfinkel

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D12950

llvm-svn: 248608
2015-09-25 19:59:57 +00:00
Sanjoy Das
33ef65354e [ScalarEvolution] Fix PR24757.
Summary:
PR24757 was caused by some incorect math in
`ScalarEvolution::HowFarToZero` -- the smallest unsigned solution for X
in

  2^N * A = 2^N * X

is not necessarily A.

Reviewers: atrick, majnemer, meheff

Subscribers: llvm-commits, sanjoy

Differential Revision: http://reviews.llvm.org/D12721

llvm-svn: 247242
2015-09-10 05:27:38 +00:00
Piotr Padlewski
56f48d9943 ScalarEvolution assume hanging bugfix
http://reviews.llvm.org/D12719

llvm-svn: 247184
2015-09-09 20:47:30 +00:00
Chandler Carruth
d7003090ac [PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible
with the new pass manager, and no longer relying on analysis groups.

This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:

- FunctionAAResults is a type-erasing alias analysis results aggregation
  interface to walk a single query across a range of results from
  different alias analyses. Currently this is function-specific as we
  always assume that aliasing queries are *within* a function.

- AAResultBase is a CRTP utility providing stub implementations of
  various parts of the alias analysis result concept, notably in several
  cases in terms of other more general parts of the interface. This can
  be used to implement only a narrow part of the interface rather than
  the entire interface. This isn't really ideal, this logic should be
  hoisted into FunctionAAResults as currently it will cause
  a significant amount of redundant work, but it faithfully models the
  behavior of the prior infrastructure.

- All the alias analysis passes are ported to be wrapper passes for the
  legacy PM and new-style analysis passes for the new PM with a shared
  result object. In some cases (most notably CFL), this is an extremely
  naive approach that we should revisit when we can specialize for the
  new pass manager.

- BasicAA has been restructured to reflect that it is much more
  fundamentally a function analysis because it uses dominator trees and
  loop info that need to be constructed for each function.

All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.

The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.

This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.

Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.

One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.

Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.

Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.

Differential Revision: http://reviews.llvm.org/D12080

llvm-svn: 247167
2015-09-09 17:55:00 +00:00
Chandler Carruth
4d1e1851a4 [PM] Port ScalarEvolution to the new pass manager.
This change makes ScalarEvolution a stand-alone object and just produces
one from a pass as needed. Making this work well requires making the
object movable, using references instead of overwritten pointers in
a number of places, and other refactorings.

I've also wired it up to the new pass manager and added a RUN line to
a test to exercise it under the new pass manager. This includes basic
printing support much like with other analyses.

But there is a big and somewhat scary change here. Prior to this patch
ScalarEvolution was never *actually* invalidated!!! Re-running the pass
just re-wired up the various other analyses and didn't remove any of the
existing entries in the SCEV caches or clear out anything at all. This
might seem OK as everything in SCEV that can uses ValueHandles to track
updates to the values that serve as SCEV keys. However, this still means
that as we ran SCEV over each function in the module, we kept
accumulating more and more SCEVs into the cache. At the end, we would
have a SCEV cache with every value that we ever needed a SCEV for in the
entire module!!! Yowzers. The releaseMemory routine would dump all of
this, but that isn't realy called during normal runs of the pipeline as
far as I can see.

To make matters worse, there *is* actually a key that we don't update
with value handles -- there is a map keyed off of Loop*s. Because
LoopInfo *does* release its memory from run to run, it is entirely
possible to run SCEV over one function, then over another function, and
then lookup a Loop* from the second function but find an entry inserted
for the first function! Ouch.

To make matters still worse, there are plenty of updates that *don't*
trip a value handle. It seems incredibly unlikely that today GVN or
another pass that invalidates SCEV can update values in *just* such
a way that a subsequent run of SCEV will incorrectly find lookups in
a cache, but it is theoretically possible and would be a nightmare to
debug.

With this refactoring, I've fixed all this by actually destroying and
recreating the ScalarEvolution object from run to run. Technically, this
could increase the amount of malloc traffic we see, but then again it is
also technically correct. ;] I don't actually think we're suffering from
tons of malloc traffic from SCEV because if we were, the fact that we
never clear the memory would seem more likely to have come up as an
actual problem before now. So, I've made the simple fix here. If in fact
there are serious issues with too much allocation and deallocation,
I can work on a clever fix that preserves the allocations (while
clearing the data) between each run, but I'd prefer to do that kind of
optimization with a test case / benchmark that shows why we need such
cleverness (and that can test that we actually make it faster). It's
possible that this will make some things faster by making the SCEV
caches have higher locality (due to being significantly smaller) so
until there is a clear benchmark, I think the simple change is best.

Differential Revision: http://reviews.llvm.org/D12063

llvm-svn: 245193
2015-08-17 02:08:17 +00:00
Bjarke Hammersholt Roune
c5853844e0 [SCEV] Apply NSW and NUW flags via poison value analysis for sub, mul and shl
Summary:
http://reviews.llvm.org/D11212 made Scalar Evolution able to propagate NSW and NUW flags from instructions to SCEVs for add instructions. This patch expands that to sub, mul and shl instructions.

This change makes LSR able to generate pointer induction variables for loops like these, where the index is 32 bit and the pointer is 64 bit:

  for (int i = 0; i < numIterations; ++i)
    sum += ptr[i - offset];

  for (int i = 0; i < numIterations; ++i)
    sum += ptr[i * stride];

  for (int i = 0; i < numIterations; ++i)
    sum += ptr[3 * (i << 7)];


Reviewers: atrick, sanjoy

Subscribers: sanjoy, majnemer, hfinkel, llvm-commits, meheff, jingyue, eliben

Differential Revision: http://reviews.llvm.org/D11860

llvm-svn: 245118
2015-08-14 22:45:26 +00:00
Jingyue Wu
a6a8a2d2b1 [SCEV] Apply NSW and NUW flags via poison value analysis
Summary:
Make Scalar Evolution able to propagate NSW and NUW flags from instructions to SCEVs in some cases. This is based on reasoning about when poison from instructions with these flags would trigger undefined behavior. This gives a 13% speed-up on some Eigen3-based Google-internal microbenchmarks for NVPTX.

There does not seem to be clear agreement about when poison should be considered to propagate through instructions. In this analysis, poison propagates only in cases where that should be uncontroversial.

This change makes LSR able to create induction variables for expressions like &ptr[i + offset] for loops like this:

  for (int i = 0; i < limit; ++i) {
    sum += ptr[i + offset];
  }

Here ptr is a 64 bit pointer and offset is a 32 bit integer. For NVPTX, LSR currently creates an induction variable for i + offset instead, which is not as fast. Improving this situation is what brings the 13% speed-up on some Eigen3-based Google-internal microbenchmarks for NVPTX.


There are more details in this discussion on llvmdev.
June: http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-June/thread.html#87234
July: http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-July/thread.html#87392

Patch by Bjarke Roune

Reviewers: eliben, atrick, sanjoy

Subscribers: majnemer, hfinkel, jingyue, meheff, llvm-commits

Differential Revision: http://reviews.llvm.org/D11212

llvm-svn: 243460
2015-07-28 18:22:40 +00:00
David Blaikie
dfadb4e9ee [opaque pointer type] Add textual IR support for explicit type parameter to the call instruction
See r230786 and r230794 for similar changes to gep and load
respectively.

Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.

When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.

This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.

This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).

No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.

This leaves /only/ the varargs case where the explicit type is required.

Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.

About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.

import fileinput
import sys
import re

pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")

def conv(match, line):
  if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
    return line
  return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]

for line in sys.stdin:
  sys.stdout.write(conv(re.search(pat, line), line))

llvm-svn: 235145
2015-04-16 23:24:18 +00:00
Sanjoy Das
23dbc8c364 [SCEV] Look at backedge dominating conditions (re-land r233447).
Summary:
This change teaches ScalarEvolution::isLoopBackedgeGuardedByCond to look
at edges within the loop body that dominate the latch.  We don't do an
exhaustive search for all possible edges, but only a quick walk up the
dom tree.

This re-lands r233447.  r233447 was reverted because it caused massive
compile-time regressions.  This change has a fix for the same issue.

llvm-svn: 233829
2015-04-01 18:24:06 +00:00
Daniel Jasper
49f0e0afd6 Revert "[SCEV] Look at backedge dominating conditions."
This leads to terribly slow compile times under MSAN. More discussion
on the commit thread of r233447.

llvm-svn: 233529
2015-03-30 09:30:02 +00:00
Sanjoy Das
7a86d5d742 [SCEV] Look at backedge dominating conditions.
Summary:
This change teaches ScalarEvolution::isLoopBackedgeGuardedByCond to look
at edges within the loop body that dominate the latch.  We don't do an
exhaustive search for all possible edges, but only a quick walk up the
dom tree.

Reviewers: atrick, hfinkel

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D8627

llvm-svn: 233447
2015-03-27 23:18:08 +00:00
Sanjoy Das
f1fd8e6a14 [SCEV] Revert bailout added in r75511.
Summary:
With the introduction of MarkPendingLoopPredicates in r157092, I don't
think the bailout is needed anymore.

Reviewers: atrick, nicholas

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D8624

llvm-svn: 233296
2015-03-26 17:28:26 +00:00
Nick Lewycky
5d6894e310 When simplifying a SCEV truncate by distributing, consider it a simplification to replace a cast, even if we end up with a trunc around the term. Fixes PR22960!
llvm-svn: 232794
2015-03-20 02:25:00 +00:00
Sanjoy Das
5eb8697ebb [SCEV] Make isImpliedCond smarter.
Summary:
This change teaches isImpliedCond to infer things like "X sgt 0" => "X -
1 sgt -1".  The `ConstantRange` class has the logic to do the heavy
lifting, this change simply gets ScalarEvolution to exploit that when
reasonable.

Depends on D8345

Reviewers: atrick

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D8346

llvm-svn: 232576
2015-03-18 00:41:29 +00:00
Sanjoy Das
a9f3560655 [SCEV] Fix PR22856.
Summary:
ScalarEvolutionExpander assumes that the header block of a loop is a
legal place to have a use for a phi node.  This is true only for phis
that are either in the header or dominate the header block, but it is
not true for phi nodes that are strictly internal to the loop body.

This change teaches ScalarEvolutionExpander to place uses of PHI nodes
in the basic block the PHI nodes belong to.  This is always legal, and
`hoistIVInc` ensures that the said position dominates `IsomorphicInc`.

Reviewers: atrick

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D8311

llvm-svn: 232189
2015-03-13 18:31:19 +00:00
David Blaikie
3ea2df7c7b [opaque pointer type] Add textual IR support for explicit type parameter to gep operator
Similar to gep (r230786) and load (r230794) changes.

Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.

(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)

import fileinput
import sys
import re

rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)

def conv(match):
  line = match.group(1)
  line += match.group(4)
  line += ", "
  line += match.group(2)
  return line

line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
  sys.stdout.write(line[off:match.start()])
  sys.stdout.write(conv(match))
  off = match.end()
sys.stdout.write(line[off:])

llvm-svn: 232184
2015-03-13 18:20:45 +00:00
Nick Lewycky
371315cf35 When forming an addrec out of a phi don't just look at the last computation and steal its flags for our own, there may be other computations in the middle. Check whether the LHS of the computation is the phi itself and then we know it's safe to steal the flags. Fixes PR22795.
There's a missed optimization opportunity where we could look at the full chain of computation and take the intersection of the flags instead of only looking one instruction deep.

llvm-svn: 232134
2015-03-13 01:37:52 +00:00
Sanjoy Das
dd01838ee9 [SCEV] Unify getUnsignedRange and getSignedRange
Summary:
This removes some duplicated code, and also helps optimization: e.g. in
the test case added, `%idx ULT 128` in `@x` is not currently optimized
to `true` by `-indvars` but will be, after this change.

The only functional change in ths commit is that for add recurrences,
ScalarEvolution::getRange will be more aggressive -- computing the
unsigned (resp. signed) range for a SCEVAddRecExpr will now look at the
NSW (resp. NUW) bits and check for signed (resp. unsigned) overflow.
This can be a strict improvement in some cases (such as the attached
test case), and should be no worse in other cases.

Reviewers: atrick, nlewycky

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D8142

llvm-svn: 231709
2015-03-09 21:43:43 +00:00
Sanjoy Das
632d955ab8 [SCEV] Add a `scalar-evolution-print-constant-ranges' option
Summary:
Unused in this commit, but will be used in a subsequent change (D8142)
by a FileCheck test.

Reviewers: atrick

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D8143

llvm-svn: 231708
2015-03-09 21:43:39 +00:00
Sanjoy Das
f45ab4139a [SCEV] make SCEV smarter about proving no-wrap.
Summary:
Teach SCEV to prove no overflow for an add recurrence by proving
something about the range of another add recurrence a loop-invariant
distance away from it.

Reviewers: atrick, hfinkel

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D7980

llvm-svn: 231305
2015-03-04 22:24:17 +00:00
Mehdi Amini
29ebc2d39f Make DataLayout Non-Optional in the Module
Summary:
DataLayout keeps the string used for its creation.

As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().

Get rid of DataLayoutPass: the DataLayout is in the Module

The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.

Make DataLayout Non-Optional in the Module

Module->getDataLayout() will never returns nullptr anymore.

Reviewers: echristo

Subscribers: resistor, llvm-commits, jholewinski

Differential Revision: http://reviews.llvm.org/D7992

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231270
2015-03-04 18:43:29 +00:00
David Blaikie
ab043ff680 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
David Blaikie
0d99339102 [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

llvm-svn: 230786
2015-02-27 19:29:02 +00:00
Sanjoy Das
60e1014097 Bugfix: SCEVExpander incorrectly marks increment operations as no-wrap
(The change was landed in r230280 and caused the regression PR22674.
This version contains a fix and a test-case for PR22674).
    
When emitting the increment operation, SCEVExpander marks the
operation as nuw or nsw based on the flags on the preincrement SCEV.
This is incorrect because, for instance, it is possible that {-6,+,1}
is <nuw> while {-6,+,1}+1 = {-5,+,1} is not.
    
This change teaches SCEV to mark the increment as nuw/nsw only if it
can explicitly prove that the increment operation won't overflow.
    
Apart from the attached test case, another (more realistic)
manifestation of the bug can be seen in
Transforms/IndVarSimplify/pr20680.ll.

Differential Revision: http://reviews.llvm.org/D7778

llvm-svn: 230533
2015-02-25 20:02:59 +00:00
Hans Wennborg
fb5af71543 Revert r230280: "Bugfix: SCEVExpander incorrectly marks increment operations as no-wrap"
This caused PR22674, failing this assert:

Instructions.h:2281: llvm::Value* llvm::PHINode::getOperand(unsigned int) const: Assertion `i_nocapture < OperandTraits<PHINode>::operands(this) && "getOperand() out of range!"' failed.

llvm-svn: 230341
2015-02-24 16:19:29 +00:00
Sanjoy Das
5b35fffa29 Fix bug 22641
The bug was a result of getPreStartForExtend interpreting nsw/nuw
flags on an add recurrence more strongly than is legal.  {S,+,X}<nsw>
implies S+X is nsw only if the backedge of the loop is taken at least
once.

NOTE: I had accidentally committed an unrelated change with the commit
message of this change in r230275 (r230275 was reverted in r230279).
This is the correct change for this commit message.

Differential Revision: http://reviews.llvm.org/D7808

llvm-svn: 230291
2015-02-24 01:02:42 +00:00
Sanjoy Das
9dddcf7f33 Bugfix: SCEVExpander incorrectly marks increment operations as no-wrap
When emitting the increment operation, SCEVExpander marks the
operation as nuw or nsw based on the flags on the preincrement SCEV.
This is incorrect because, for instance, it is possible that {-6,+,1}
is <nuw> while {-6,+,1}+1 = {-5,+,1} is not.

This change teaches SCEV to mark the increment as nuw/nsw only if it
can explicitly prove that the increment operation won't overflow.

Apart from the attached test case, another (more realistic) manifestation
of the bug can be seen in Transforms/IndVarSimplify/pr20680.ll.

NOTE: this change was landed with an incorrect commit message in
rL230275 and was reverted for that reason in rL230279.  This commit
message is the correct one.

Differential Revision: http://reviews.llvm.org/D7778

llvm-svn: 230280
2015-02-23 23:22:58 +00:00
Sanjoy Das
e5ca05754e Revert 230275.
230275 got committed with an incorrect commit message due to a mixup
on my side.  Will re-land in a few moments with the correct commit
message.

llvm-svn: 230279
2015-02-23 23:13:22 +00:00
Sanjoy Das
421baaa45f Fix bug 22641
The bug was a result of getPreStartForExtend interpreting nsw/nuw
flags on an add recurrence more strongly than is legal.  {S,+,X}<nsw>
implies S+X is nsw only if the backedge of the loop is taken at least
once.

Differential Revision: http://reviews.llvm.org/D7808

llvm-svn: 230275
2015-02-23 22:55:13 +00:00
Sanjoy Das
f5d762cf78 Generalize getExtendAddRecStart to work with both sign and zero
extensions.

This change also removes `DEBUG(dbgs() << "SCEV: untested prestart
overflow check\n");` because that case has a unit test now.

Differential Revision: http://reviews.llvm.org/D7645

llvm-svn: 229600
2015-02-18 01:47:07 +00:00
Sanjoy Das
9a8a687508 Bugfix: SCEV incorrectly marks certain add recurrences as nsw
When creating a scev for sext({X,+,Y}), scev checks if the expression
is equivalent to {sext X,+,zext Y}.  If it can prove that, it also
tags the original {X,+,Y} as <nsw>, which is not correct.

In the test case I run `-scalar-evolution` twice because the bug
manifests only once SCEV has run through and seen the `sext`
expressions (and then does a in-place mutation on {X,+,Y}).

Differential Revision: http://reviews.llvm.org/D7495

llvm-svn: 228586
2015-02-09 18:34:55 +00:00
Johannes Doerfert
70a4c8fe80 Allow ScalarEvolution to catch more min/max cases
For the attached test case different types are used in the ICmpInst
  and SelectInst that represent the min/max expressions. However, if the
  ICmpInst type is smaller a comparison with the sign/zero extended
  operands would have yielded the same result. This situation might
  arise after the instruction combination pass was applied.

  Differential Revision: http://reviews.llvm.org/D7338

llvm-svn: 228572
2015-02-09 12:34:23 +00:00
Sanjoy Das
9bd991cb84 Bugfix: ScalarEvolution incorrectly assumes that the start of certain
add recurrences don't overflow.

This change makes the optimization more restrictive.  It still assumes
that an overflowing `add nsw` is undefined behavior; and this change
will need revisiting once we have a consistent semantics for poison
values.

Differential Revision: http://reviews.llvm.org/D7331

llvm-svn: 228552
2015-02-08 22:52:17 +00:00
Sanjoy Das
0520741ff9 Make ScalarEvolution less aggressive with respect to no-wrap flags.
ScalarEvolution currently lowers a subtraction recurrence to an add
recurrence with the same no-wrap flags as the subtraction.  This is
incorrect because `sub nsw X, Y` is not the same as `add nsw X, -Y`
and `sub nuw X, Y` is not the same as `add nuw X, -Y`.  This patch
fixes the issue, and adds two test cases demonstrating the bug.

Differential Revision: http://reviews.llvm.org/D7081

llvm-svn: 226755
2015-01-22 00:48:47 +00:00
Sanjoy Das
f93f60b30a Fix PR22179.
We were incorrectly inferring nsw for certain SCEVs. We can be more
aggressive here (see Richard Smith's comment on
http://llvm.org/bugs/show_bug.cgi?id=22179) but this change just
focuses on correctness.

Differential Revision: http://reviews.llvm.org/D6914

llvm-svn: 225591
2015-01-10 23:41:24 +00:00
Duncan P. N. Exon Smith
9c5542c040 IR: Make metadata typeless in assembly
Now that `Metadata` is typeless, reflect that in the assembly.  These
are the matching assembly changes for the metadata/value split in
r223802.

  - Only use the `metadata` type when referencing metadata from a call
    intrinsic -- i.e., only when it's used as a `Value`.

  - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
    when referencing it from call intrinsics.

So, assembly like this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata !{i32 %v}, metadata !0)
      call void @llvm.foo(metadata !{i32 7}, metadata !0)
      call void @llvm.foo(metadata !1, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{metadata !3}, metadata !0)
      ret void, !bar !2
    }
    !0 = metadata !{metadata !2}
    !1 = metadata !{i32* @global}
    !2 = metadata !{metadata !3}
    !3 = metadata !{}

turns into this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata i32 %v, metadata !0)
      call void @llvm.foo(metadata i32 7, metadata !0)
      call void @llvm.foo(metadata i32* @global, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{!3}, metadata !0)
      ret void, !bar !2
    }
    !0 = !{!2}
    !1 = !{i32* @global}
    !2 = !{!3}
    !3 = !{}

I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines).  I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.

This is part of PR21532.

llvm-svn: 224257
2014-12-15 19:07:53 +00:00
David Majnemer
7e29d637c6 ScalarEvolution: HowFarToZero was wrongly using signed division
HowFarToZero was supposed to use unsigned division in order to calculate
the backedge taken count.  However, SCEVDivision::divide performs signed
division.  Unless I am mistaken, no users of SCEVDivision actually want
signed arithmetic: switch to udiv and urem.

This fixes PR21578.

llvm-svn: 222093
2014-11-16 07:30:35 +00:00
Rafael Espindola
233f1b11dd Use FileCheck in a few tests.
llvm-svn: 221459
2014-11-06 15:05:51 +00:00
Bradley Smith
3e03fb9d20 [SCEV] Improve Scalar Evolution's use of no {un,}signed wrap flags
In a case where we have a no {un,}signed wrap flag on the increment, if
RHS - Start is constant then we can avoid inserting a max operation bewteen
the two, since we can statically determine which is greater.

This allows us to unroll loops such as:

 void testcase3(int v) {
   for (int i=v; i<=v+1; ++i)
     f(i);
 }

llvm-svn: 220960
2014-10-31 11:40:32 +00:00
Sanjoy Das
c03606ae56 This patch teaches ScalarEvolution to pick and use !range metadata.
It also makes it more aggressive in querying range information by
adding a call to isKnownPredicateWithRanges to
isLoopBackedgeGuardedByCond and isLoopEntryGuardedByCond.

phabricator: http://reviews.llvm.org/D5638

Reviewed by: atrick, hfinkel

llvm-svn: 219532
2014-10-10 21:22:34 +00:00
Mark Heffernan
fdfe8b7008 This patch de-pessimizes the calculation of loop trip counts in
ScalarEvolution in the presence of multiple exits. Previously all
loops exits had to have identical counts for a loop trip count to be
considered computable. This pessimization was implemented by calling
getBackedgeTakenCount(L) rather than getExitCount(L, ExitingBlock)
inside of ScalarEvolution::getSmallConstantTripCount() (see the FIXME
in the comments of that function). The pessimization was added to fix
a corner case involving undefined behavior (pr/16130). This patch more
precisely handles the undefined behavior case allowing the pessimization
to be removed.

ControlsExit replaces IsSubExpr to more precisely track the case where
undefined behavior is expected to occur. Because undefined behavior is
tracked more precisely we can remove MustExit from ExitLimit. MustExit
was used to track the case where the limit was computed potentially
assuming undefined behavior even if undefined behavior didn't necessarily
occur.

llvm-svn: 219517
2014-10-10 17:39:11 +00:00
Hal Finkel
56525dc578 Make use @llvm.assume for loop guards in ScalarEvolution
This adds a basic (but important) use of @llvm.assume calls in ScalarEvolution.
When SE is attempting to validate a condition guarding a loop (such as whether
or not the loop count can be zero), this check should also include dominating
assumptions.

llvm-svn: 217348
2014-09-07 21:37:59 +00:00
Dinesh Dwivedi
fb685e9362 Adding testcase for PR18886.
Differential Revision: http://reviews.llvm.org/D3837

llvm-svn: 209645
2014-05-27 06:44:25 +00:00
Andrew Trick
3b1d9af079 Test case comments. Fix sloppiness.
llvm-svn: 209551
2014-05-23 20:46:21 +00:00
Andrew Trick
3b4463f718 Fix and improve SCEV ComputeBackedgeTankCount.
This is a follow-up to r209358: PR19799: Indvars miscompile due to an
incorrect max backedge taken count from SCEV.

That fix was incomplete as pointed out by Arnold and Michael Z. The
code was also too confusing. It needed a careful rewrite with more
unit tests. This version will also happen to optimize more cases.

<rdar://17005101> PR19799: Indvars miscompile...

llvm-svn: 209545
2014-05-23 19:47:13 +00:00
Andrew Trick
102d4404fb Fix a bug in SCEV's backedge taken count computation from my prior fix in Jan.
This has to do with the trip count computation for loops with multiple
exits, which is quite subtle. Most passes just ask for a single trip
count number, so we must be conservative assuming any exit could be
taken.  Normally, we rely on the "exact" trip count, which was
correctly given as "unknown". However, SCEV also gives a "max"
back-edge taken count. The loops max BE taken count is conservatively
a maximum over the max of each exit's non-exiting iterations
count. Note that some exit tests can be skipped so the max loop
back-edge taken count can actually exceed the max non-exiting
iterations for some exits. However, when we know the loop *latch*
cannot be skipped, we can directly use its max taken count
disregarding other exits. I previously took the minimum here without
checking whether the other exit could be skipped. The correct, and
simpler thing to do here is just to directly use the loop latch's max
non-exiting iterations as the loops max back-edge count.

In the problematic test case, the first loop exit had a max of zero
non-exiting iterations, but could be skipped. The loop latch was known
not to be skipped but had max of one non-exiting iteration. We
incorrectly claimed the loop back-edge could be taken zero times, when
it is actually taken one time.

Fixes Loop %for.body.i: <multiple exits> Unpredictable backedge-taken count.
Loop %for.body.i: max backedge-taken count is 1.

llvm-svn: 209358
2014-05-22 00:37:03 +00:00
Benjamin Kramer
79c500fdd4 ScalarEvolution: Compute exit counts for loops with a power-of-2 step.
If we have a loop of the form
for (unsigned n = 0; n != (k & -32); n += 32) {}
then we know that n is always divisible by 32 and the loop must
terminate. Even if we have a condition where the loop counter will
overflow it'll always hold this invariant.

PR19183. Our loop vectorizer creates this pattern and it's also
occasionally formed by loop counters derived from pointers.

llvm-svn: 204728
2014-03-25 16:25:12 +00:00
Nico Rieck
426e8aab2b Actually call FileCheck in tests
llvm-svn: 201491
2014-02-16 13:27:39 +00:00
Benjamin Kramer
e865e6358f ScalarEvolution: Analyze trip count of loops with a switch guarding the exit.
llvm-svn: 201159
2014-02-11 15:44:32 +00:00
Nick Lewycky
30a25a7139 Fix crasher introduced in r200203 and caught by a libc++ buildbot. Don't assume that getMulExpr returns a SCEVMulExpr, it may have simplified it to something else!
llvm-svn: 200210
2014-01-27 10:47:44 +00:00
Nick Lewycky
baf1d18cf0 Teach SCEV to handle more cases of 'and X, CST', specifically where CST is any number of contiguous 1 bits in a row, with any number of leading and trailing 0 bits.
Unfortunately, this in turn led to some lower quality SCEVs due to some different paths through expression simplification, so add getUDivExactExpr and use it. This fixes all instances of the problems that I found, but we can make that function smarter as necessary.

Merge test "xor-and.ll" into "and-xor.ll" since I needed to update it anyways. Test 'nsw-offset.ll' analyzes a little deeper, %n now gets a scev in terms of %no instead of a SCEVUnknown.

llvm-svn: 200203
2014-01-27 10:04:03 +00:00
Alp Toker
1c4b33e8e5 Fix known typos
Sweep the codebase for common typos. Includes some changes to visible function
names that were misspelt.

llvm-svn: 200018
2014-01-24 17:20:08 +00:00
Stepan Dyatkovskiy
3ed8a09218 Fixed old typo in ScalarEvolution, that caused wrong SCEVs zext operation.
Detailed description is here:
http://llvm.org/bugs/show_bug.cgi?id=18000#c16

For participation in bugfix process special thanks to David Wiberg.

llvm-svn: 198863
2014-01-09 12:26:12 +00:00
Andrew Trick
b072cf7882 Rewrite SCEV's backedge taken count computation.
Patch by Michele Scandale!

Rewrite of the functions used to compute the backedge taken count of a
loop on LT and GT comparisons.

I decided to split the handling of LT and GT cases becasue the trick
"a > b == -a < -b" in some cases prevents the trip count computation
due to the multiplication by -1 on the two operands of the
comparison. This issue comes from the conservative computation of
value range of SCEVs: taking the negative SCEV of an expression that
have a small positive range (e.g. [0,31]), we would have a SCEV with a
fullset as value range.

Indeed, in the new rewritten function I tried to better handle the
maximum backedge taken count computation when MAX/MIN expression are
used to handle the cases where no entry guard is found.

Some test have been modified in order to check the new value correctly
(I manually check them and reasoning on possible overflow the new
values seem correct).

I finally added a new test case related to the multiplication by -1
issue on GT comparisons.

llvm-svn: 194116
2013-11-06 02:08:26 +00:00
Benjamin Kramer
5938ec4cbe SCEV: Make the final add of an inbounds GEP nuw if we know that the index is positive.
We can't do this for the general case as saying a GEP with a negative index
doesn't have unsigned wrap isn't valid for negative indices.
  %gep = getelementptr inbounds i32* %p, i64 -1

But an inbounds GEP cannot run past the end of address space. So we check for
the very common case of a positive index and make GEPs derived from that NUW.
Together with Andy's recent non-unit stride work this lets us analyze loops
like

  void foo3(int *a, int *b) {
    for (; a < b; a++) {}
  }

PR12375, PR12376.

Differential Revision: http://llvm-reviews.chandlerc.com/D2033

llvm-svn: 193514
2013-10-28 07:30:06 +00:00
Matt Arsenault
3089ca20bd Fix creating bitcasts between address spaces in SCEV.
The test before wasn't successfully testing this
since it was missing the datalayout piece to change
the size of the second address space.

llvm-svn: 193102
2013-10-21 18:41:10 +00:00
Andrew Trick
027f71d443 SCEV should use NSW to get trip count for positive nonunit stride loops.
SCEV currently fails to compute loop counts for nonunit stride
loops. This comes up frequently. It prevents loop optimization and
forces vectorization to insert extra loop checks.

For example:
void foo(int n, int *x) {
 for (int i = 0; i < n; i += 3) {
   x[i] = i;
   x[i+1] = i+1;
   x[i+2] = i+2;
 }
}

We need to properly handle the case in which limit > INT_MAX-stride. In
the above case: n > INT_MAX-3. In this case the loop counter will step
beyond the limit and overflow at the same time. However, knowing that
signed integer overlow in undefined, we can assume the loop test
behavior is arbitrary after overflow. This obeys both C undefined
behavior rules, and the more strict LLVM poison value rules.

I'm finally fixing this in response to Hal Finkel's persistence.
The most probable reason that we never optimized this before is that
we were being careful to handle case where the developer expected a
side-effect free infinite loop relying on overflow:

for (int i = 0; i < n; i += s) {
  ++j;
}
return j;

If INT_MAX+1 is a multiple of s and n > INT_MAX-s, then we might
expect an infinite loop. However there are plenty of ways to achieve
this effect without relying on undefined behavior of signed overflow.

llvm-svn: 193015
2013-10-18 23:43:53 +00:00
Matt Arsenault
a15663a1b4 Teach ScalarEvolution about pointer address spaces
llvm-svn: 190425
2013-09-10 19:55:24 +00:00
Bill Wendling
df27f44bd7 FileCheck-ize tests.
llvm-svn: 188971
2013-08-22 00:51:19 +00:00
Daniel Dunbar
a496d61c01 [tests] Cleanup initialization of test suffixes.
- Instead of setting the suffixes in a bunch of places, just set one master
   list in the top-level config. We now only modify the suffix list in a few
   suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).

 - Aside from removing the need for a bunch of lit.local.cfg files, this enables
   4 tests that were inadvertently being skipped (one in
   Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
   CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
   XFAILED).

 - This commit also fixes a bunch of config files to use config.root instead of
   older copy-pasted code.

llvm-svn: 188513
2013-08-16 00:37:11 +00:00
Bill Wendling
21cb95c7bf FileCheckize some of the testcases.
llvm-svn: 187756
2013-08-05 23:43:18 +00:00
Stephen Lin
74b6dc3cef Add newlines at end of test files, no functionality change
llvm-svn: 186263
2013-07-13 22:00:58 +00:00
Andrew Trick
c470f27448 Unit test for SCEV fix r182989, PR16130.
llvm-svn: 183017
2013-05-31 16:42:41 +00:00
Manman Ren
13b2364d24 TBAA: remove !tbaa from testing cases if not used.
This will make it easier to turn on struct-path aware TBAA since the metadata
format will change.

llvm-svn: 180743
2013-04-29 22:42:01 +00:00
Andrew Trick
57ddfcf201 Fix SCEV forgetMemoizedResults should search and destroy backedge exprs.
Fixes PR15570: SEGV: SCEV back-edge info invalid after dead code removal.

Indvars creates a SCEV expression for the loop's back edge taken
count, then determines that the comparison is always true and
removes it.

When loop-unroll asks for the expression, it contains a NULL
SCEVUnknkown (as a CallbackVH).

forgetMemoizedResults should invalidate the loop back edges expression.

llvm-svn: 177986
2013-03-26 03:14:53 +00:00
Dmitri Gribenko
968fc2e59b Tests: rewrite 'opt ... %s' to 'opt ... < %s' so that opt does not emit a ModuleID
This is done to avoid odd test failures, like the one fixed in r171243.

llvm-svn: 171250
2012-12-30 02:33:22 +00:00
Dmitri Gribenko
abbc99565a Add a check to the test Analysis/ScalarEvolution/2010-09-03-RequiredTransitive.ll
This test did not test anything at all (except for opt crashing, but that was
not the reason why it was added).

llvm-svn: 171248
2012-12-30 01:42:34 +00:00
Dmitri Gribenko
e3769d450b Tests: rewrite 'opt ... %s' to 'opt ... < %s' so that opt does not emit a ModuleID
This is done to avoid odd test failures, like the one fixed in r171243.

llvm-svn: 171246
2012-12-30 01:28:40 +00:00
Benjamin Kramer
b42939c43b Fix broken check lines.
I really need to find a way to automate this, but I can't come up with a regex
that has no false positives while handling tricky cases like custom check
prefixes.

llvm-svn: 162097
2012-08-17 12:28:26 +00:00
Nick Lewycky
e84df7229f Stay rational; don't assert trying to take the square root of a negative value.
If it's negative, the loop is already proven to be infinite. Fixes PR13489!

llvm-svn: 161107
2012-08-01 09:14:36 +00:00
Chandler Carruth
5d3a0ce4e5 Fix the remaining TCL-style quotes found in the testsuite. This is
another mechanical change accomplished though the power of terrible Perl
scripts.

I have manually switched some "s to 's to make escaping simpler.

While I started this to fix tests that aren't run in all configurations,
the massive number of tests is due to a really frustrating fragility of
our testing infrastructure: things like 'grep -v', 'not grep', and
'expected failures' can mask broken tests all too easily.

Essentially, I'm deeply disturbed that I can change the testsuite so
radically without causing any change in results for most platforms. =/

llvm-svn: 159547
2012-07-02 19:09:46 +00:00
Chandler Carruth
d200829a4f Convert the uses of '|&' to use '2>&1 |' instead, which works on old
versions of Bash. In addition, I can back out the change to the lit
built-in shell test runner to support this.

This should fix the majority of fallout on Darwin, but I suspect there
will be a few straggling issues.

llvm-svn: 159544
2012-07-02 18:37:59 +00:00
Chandler Carruth
8a358b3669 Convert all tests using TCL-style quoting to use shell-style quoting.
This was done through the aid of a terrible Perl creation. I will not
paste any of the horrors here. Suffice to say, it require multiple
staged rounds of replacements, state carried between, and a few
nested-construct-parsing hacks that I'm not proud of. It happens, by
luck, to be able to deal with all the TCL-quoting patterns in evidence
in the LLVM test suite.

If anyone is maintaining large out-of-tree test trees, feel free to poke
me and I'll send you the steps I used to convert things, as well as
answer any painful questions etc. IRC works best for this type of thing
I find.

Once converted, switch the LLVM lit config to use ShTests the same as
Clang. In addition to being able to delete large amounts of Python code
from 'lit', this will also simplify the entire test suite and some of
lit's architecture.

Finally, the test suite runs 33% faster on Linux now. ;]
For my 16-hardware-thread (2x 4-core xeon e5520): 36s -> 24s

llvm-svn: 159525
2012-07-02 12:47:22 +00:00
Nick Lewycky
6b7498ebd5 If the step value is a constant zero, the loop isn't going to terminate. Fixes
the assert reported in PR13228!

llvm-svn: 159393
2012-06-28 23:44:57 +00:00
Andrew Trick
39e8cd5b2f SCEV: Handle a corner case reducing AddRecExpr * AddRecExpr
If integer overflow causes one of the terms to reach zero, that can
force the entire expression to zero.

Fixes PR12929: cast<Ty>() argument of incompatible type

llvm-svn: 157673
2012-05-30 03:35:20 +00:00
Andrew Trick
c3765e6af0 SCEV: Add MarkPendingLoopPredicates to avoid recursive isImpliedCond.
getUDivExpr attempts to simplify by checking for overflow.
isLoopEntryGuardedByCond then evaluates the loop predicate which
may lead to the same getUDivExpr causing endless recursion.

Fixes PR12868: clang 3.2 segmentation fault.

llvm-svn: 157092
2012-05-19 00:48:25 +00:00
Benjamin Kramer
550faddc94 Revert "SCEV: When expanding a GEP the final addition to the base pointer has NUW but not NSW."
This isn't right either, reverting for now.

llvm-svn: 154910
2012-04-17 06:33:57 +00:00
Benjamin Kramer
a690750db9 SCEV: When expanding a GEP the final addition to the base pointer has NUW but not NSW.
Found by inspection.

llvm-svn: 154262
2012-04-07 17:19:26 +00:00
Andrew Trick
88a52fd943 SCEV fix: Handle loop invariant loads.
Fixes PR11882: NULL dereference in ComputeLoadConstantCompareExitLimit.

llvm-svn: 153480
2012-03-26 22:33:59 +00:00
Andrew Trick
e0b7008fb8 Test scalar evolution directly instead of testing the result of
canonical indvars.

llvm-svn: 153256
2012-03-22 17:09:31 +00:00
Eli Bendersky
4afdeeb682 Replace all instances of dg.exp file with lit.local.cfg, since all tests are run with LIT now and now Dejagnu. dg.exp is no longer needed.
Patch reviewed by Daniel Dunbar. It will be followed by additional cleanup patches.

llvm-svn: 150664
2012-02-16 06:28:33 +00:00