Remove the `nosync` attribute from the memory intrinsic definitions
(i.e. memset, memcpy, memmove).
Like native memory accesses, memory intrinsics can be volatile. This is
indicated by an immarg in the intrinsic call. All else equal, a volatile
memory intrinsic is `sync`, so we cannot annotate the intrinsic functions
themselves as `nosync`. The attributor and function-attr passes know to
take the volatile bit into account.
Since `nosync` is a default attribute, this means we have to stop using
the DefaultAttrIntrinsic tablegen class for memory intrinsics, and
specify all default attributes other than `nosync` explicitly.
Most of the test changes are trivial churn, but one test case
(in nosync.ll) was in fact incorrect before this change.
Differential Revision: https://reviews.llvm.org/D102295
Haswell, Excavator and early Ryzen all have slower 256-bit non-uniform vector shifts (confirmed on AMDSoG/Agner/instlatx64 and llvm models) - so bump the worst case costs accordingly.
Noticed while investigating PR50364
Noticed while investigating PR50364, the truncation costs for v4i64->v4i16/v4i8 and v8i32->v8i8 were way too optimistic for a shuffle sequence that usually matches the AVX1 codegen (they matched AVX512 numbers which have actual truncation instructions!).
As reported in post-commit feedback, this has issues with e.g. <16 x i1>:
https://llvm.godbolt.org/z/jxPvdGEW4
This reverts commit c02476f3158f2908ef0a6f628210b5380bd33695.
We already apply loop-guards when computing the maximum with unitary
steps. This extends the code to also do so when dealing with non-unitary
steps.
This allows us to infer a tighter maximum in some cases.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D102267
Now that getMemoryOpCost() correctly handles all the vector variants,
we should no longer hand-roll our own version of it, but use it directly.
The AVX512 variant probably needs a similar change,
but there it is less obvious.
Instead of handling power-of-two sized vector chunks,
try handling the large vector in a stream mode,
decreasing the operational vector size
once it no longer works for the elements left to process.
Notably, this improves costs for overaligned loads - loading padding is fine.
This more directly tracks when we need to insert/extract the YMM/XMM subvector,
some costs fluctuate because of that.
Reviewed By: RKSimon, ABataev
Differential Revision: https://reviews.llvm.org/D100684
Patch by Artem Radzikhovskyy!
Allow delinearization of fixed sized arrays if we can prove that the GEP indices do not overflow the array dimensions. The checks applied are similar to the ones that are used for delinearization of parametric size arrays. Make sure that the GEP indices are non-negative and that they are smaller than the range of that dimension.
Changes Summary:
- Updated the LIT tests with more exact values, as we are able to delinearize and apply more exact tests
- profitability.ll - now able to delinearize in all cases, no need to use -da-disable-delinearization-checks flag and run the test twice
- loop-interchange-optimization-remarks.ll - in one of the cases we are able to delinearize without using -da-disable-delinearization-checks
- SimpleSIVNoValidityCheckFixedSize.ll - removed unnecessary "-da-disable-delinearization-checks" flag. Now can get the exact answer without it.
- SimpleSIVNoValidityCheckFixedSize.ll and PreliminaryNoValidityCheckFixedSize.ll - made negative tests more explicit, in order to demonstrate the need for "-da-disable-delinearization-checks" flag
Differential Revision: https://reviews.llvm.org/D101486
applyLoopGuards() already combines conditions from multiple nested
guards. However, it cannot use multiple conditions on the same guard,
combined using and/or. Add support for this by recursing into either
`and` or `or`, depending on the direction of the branch.
Differential Revision: https://reviews.llvm.org/D101692
Currently we model i16 bswap as very high cost (`10`),
which doesn't seem right, with all other being at `1`.
Regardless of `MOVBE`, i16 reg-reg bswap is lowered into
(an extending move plus) rot-by-8:
https://godbolt.org/z/8jrq7fMTj
I think it should at worst have throughput of `1`:
Since i32/i64 already have cost of `1`,
`MOVBE` doesn't improve their costs any further.
BUT, `MOVBE` must have at least a single memory operand,
with other being a register. Which means, if we have
a bswap of load, iff load has a single use,
we'll fold bswap into load.
Likewise, if we have store of a bswap, iff bswap
has a single use, we'll fold bswap into store.
So i think we should treat such a bswap as free,
unless of course we know that for the particular CPU
they are performing badly.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D101924
induction variable to be perfect
This patch allow more conditional branches to be considered as loop
guard, and so more loop nests can be considered perfect.
Reviewed By: bmahjour, sidbav
Differential Revision: https://reviews.llvm.org/D94717
Pointers escape when converted to integers, so a pointer produced by
converting an integer to a pointer must not be a local non-escaping
object.
Reviewed By: nikic, nlopes, aqjune
Differential Revision: https://reviews.llvm.org/D101541
This was reverted because of a reported problem. It turned out this patch didn't introduce said problem, it just exposed it more widely. 15a4233 fixes the root issue, so this simple a) rebases over that, and b) adds a much more extensive comment explaining why that weakened assert is correct.
Original commit message follows:
Follow up to D99912, specifically the revert, fix, and reapply thereof.
This generalizes the invertible recurrence logic in two ways:
* By allowing mismatching operand numbers of the phi, we can recurse through a pair of phi recurrences whose operand orders have not been canonicalized.
* By allowing recurrences through operand 1, we can invert these odd (but legal) recurrence.
Differential Revision: https://reviews.llvm.org/D100884
Follow up to D99912, specifically the revert, fix, and reapply thereof.
This generalizes the invertible recurrence logic in two ways:
* By allowing mismatching operand numbers of the phi, we can recurse through a pair of phi recurrences whose operand orders have not been canonicalized.
* By allowing recurrences through operand 1, we can invert these odd (but legal) recurrence.
Differential Revision: https://reviews.llvm.org/D100884
Straight forward extension to the recently added infrastructure which was pioneered with shl. This was originally posted as part of D99687, but split off for ease of review.
(I also decided to exclude the unknown start sign case explicitly for simplicity of understanding.)
Differential Revision: https://reviews.llvm.org/D101181
SCEV does not look through non-header PHIs inside the loop. Such phis
can be analyzed by adding separate accesses for each incoming pointer
value.
This results in 2 more loops vectorized in SPEC2000/186.crafty and
avoids regressions when sinking instructions before vectorizing.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D101286
These can be handled the same way as ule/ult, just using umax
instead of umin. This is useful in cases where the umax prevents
the upper bound from overflowing.
Differential Revision: https://reviews.llvm.org/D101196
Patch by Artem Radzikhovskyy!
Symptom: ExactSIV test produced incorrect analysis of dependencies see LIT tests
Bug: At the end of the algorithm when determining dependence direction original author forgot to divide intermediate results by gcd and round result toward zero
Although this bug can be fixed with significantly fewer changes I opted to write the code in such a way that reflects the original algorithm that Banerjee proposed, for easier reference in the future. This surprisingly results in shorter code, and fewer quotient and max/min calculations.
Changes Summary:
- fixed findGCD to return valid x and y so that they match the function description where: ax - by = gcd(a,b)
- Fixed ExactSIV test, to produce proper results
- Documented the extension of Banerjee's algorithm that the original code author introduced. Banerjee's original algorithm only tested whether Dst depends on Src, the extension also allows us to test whether Src depends on Dst, in one pass.
- ExactRDIV test worked fine. Since it uses findGCD(), it needed to be updated.Since ExactRDIV test has very few changes from the core algorithm of ExactSIV I modified the test to have consistent format as ExactSIV.
- Updated the LIT tests to be testing for correct values.
Differential Revision: https://reviews.llvm.org/D100331
When vectorising for AArch64 targets if you specify the SVE attribute
we automatically then treat masked loads and stores as legal. Also,
since we have no cost model for masked memory ops we believe it's
cheap to use the masked load/store intrinsics even for fixed width
vectors. This can lead to poor code quality as the intrinsics will
currently be scalarised in the backend. This patch adds a basic
cost model that marks fixed-width masked memory ops as significantly
more expensive than for scalable vectors.
Tests for the cost model are added here:
Transforms/LoopVectorize/AArch64/masked-op-cost.ll
Differential Revision: https://reviews.llvm.org/D100745
`X86TTIImpl::getInterleavedMemoryOpCostAVX2()` currently contains data
only for a handful of tuples. For now, at least add tests for a few more.
I'm guessing that we care how well the patterns codegen since
we use their presumed cost for vectorization decisions,
so i've added codegen tests too.
There's one really easy caveat for these codegen tests:
for interleaved load tests, we really have to ensure that the
deinterleaved vectors are escaped separately. Similarly for stores.
ICMP_NE predicates directly overwrote the rewritten result,
instead of chaining it with previous rewrites, as was done for
ICMP_ULT and ICMP_ULE. This means that some guards were effectively
discarded, depending on their order.
In cases when ScalarizationCostPassed has no value, UINT_MAX is actually used
for cost estimation in `return ScalarCalls * ScalarCost + ScalarizationCost`.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D101099
We were missing some instruction costs when converting vectors of
floating point half types into integers, so I've added those here.
I also manually generated assembly code for each FP->int case and
looked at the number of instructions generated, which meant
adjusting some of the existing costs too.
I've updated an existing test to reflect the new costs:
Analysis/CostModel/AArch64/sve-fptoi.ll
Differential Revision: https://reviews.llvm.org/D99935
Introduced the cost of thre reverse shuffles for AArch64, currently just
copied the costs for PermuteSingleSrc.
Differential Revision: https://reviews.llvm.org/D100871
I'd reverted this in commit 3b6acb179708ea2f3caf95ace0f134fcbc460333 due to buildbot failures. This patch contains the fix for said issue. I'd forgotten to handle the case where two phis in the same block have different operand order. We canonicalize away from this, but it's still valid IR. The tests included in this change (as opposed to simply having test output changed), crashed without the fix.
Original commit message follows...
This extends the phi handling in isKnownNonEqual with a special case based on invertible recurrences. If we can prove the recurrence is invertible (which many common ones are), we can recurse through the start operands of the recurrence skipping the phi cycle.
(Side note: Instcombine currently does not push back through these cases. I will implement that in a follow up change w/separate review.)
Differential Revision: https://reviews.llvm.org/D99912