Wrapper function call and dispatch handler helpers are moved to
ExecutionSession, and existing EPC-based tools are re-written to take an
ExecutionSession argument instead.
Requiring an ExecutorProcessControl instance simplifies existing EPC based
utilities (which only need to take an ES now), and should encourage more
utilities to use the EPC interface. It also simplifies process termination,
since the session can automatically call ExecutorProcessControl::disconnect
(previously this had to be done manually, and carefully ordered with the
rest of JIT tear-down to work correctly).
This patch is the initial support, it implements translation from object file to JIT link graph, and very few relocations were supported. Currently, the test file ELF_pc_indirect.s is passed, the HelloWorld program(compiled with mno-relax flag) can be linked correctly and run on instruction emulator correctly.
In the downstream implementation, I have implemented the GOT, PLT function, and EHFrame and some optimization will be implement soon. I will organize the code in to patches, then gradually send it to upstream.
Differential Revision: https://reviews.llvm.org/D105429
By replacing a lambda expression with a functor class instance, this
patch works around an issue encountered on AIX where the IBM XL compiler
appears to make no progress for many hours.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D106554
This reverts commit 6b2a96285b9bbe92d2c5e21830f21458f8be976d.
The ccache builders are still failing. Looks like they need to be updated to
get the llvm-zorg config change in 490633945677656ba75d42ff1ca9d4a400b7b243.
I'll re-apply this as soon as the builders are updated.
This reapplies commit a7733e9556b5a6334c910f88bcd037e84e17e3fc ("Re-apply
[ORC][ORC-RT] Add initial native-TLV support to MachOPlatform."), and
d4abdefc998a1ee19d5edc79ec233774cbf64f6a ("[ORC-RT] Rename macho_tlv.x86-64.s
to macho_tlv.x86-64.S (uppercase suffix)").
These patches were reverted in 48aa82cacbff10e1c5395a03f86488bf449ba4da while I
investigated bot failures (e.g.
https://lab.llvm.org/buildbot/#/builders/109/builds/18981). The fix was to
disable building of the ORC runtime on buliders using ccache (which is the same
fix used for other compiler-rt projects containing assembly code). This fix was
commited to llvm-zorg in 490633945677656ba75d42ff1ca9d4a400b7b243.
This reverts commit d4abdefc998a1ee19d5edc79ec233774cbf64f6a ("[ORC-RT] Rename
macho_tlv.x86-64.s to macho_tlv.x86-64.S (uppercase suffix)", and
a7733e9556b5a6334c910f88bcd037e84e17e3fc ("Re-apply "[ORC][ORC-RT] Add initial
native-TLV support to MachOPlatform."), while I investigate failures on
ccache builders (e.g. https://lab.llvm.org/buildbot/#/builders/109/builds/18981)
Reapplies fe1fa43f16beac1506a2e73a9f7b3c81179744eb, which was reverted in
6d8c63946cc259c0af02584b7cc690dde11dea35, with fixes:
1. Remove .subsections_via_symbols directive from macho_tlv.x86-64.s (it's
not needed here anyway).
2. Return error from pthread_key_create to the MachOPlatform to silence unused
variable warning.
Adds code to LLVM (MachOPlatform) and the ORC runtime to support native MachO
thread local variables. Adding new TLVs to a JITDylib at runtime is supported.
On the LLVM side MachOPlatform is updated to:
1. Identify thread local variables in the LinkGraph and lower them to GOT
accesses to data in the __thread_data or __thread_bss sections.
2. Merge and report the address range of __thread_data and thread_bss sections
to the runtime.
On the ORC runtime a MachOTLVManager class introduced which records the address
range of thread data/bss sections, and creates thread-local instances from the
initial data on demand. An orc-runtime specific tlv_get_addr implementation is
included which saves all register state then calls the MachOTLVManager to get
the address of the requested variable for the current thread.
LinkGraph::transferBlock can be used to move a block and all associated symbols
from one section to another.
LinkGraph::mergeSections moves all blocks and sections from a source section to
a destination section.
Adds support for MachO static initializers/deinitializers and eh-frame
registration via the ORC runtime.
This commit introduces cooperative support code into the ORC runtime and ORC
LLVM libraries (especially the MachOPlatform class) to support macho runtime
features for JIT'd code. This commit introduces support for static
initializers, static destructors (via cxa_atexit interposition), and eh-frame
registration. Near-future commits will add support for MachO native
thread-local variables, and language runtime registration (e.g. for Objective-C
and Swift).
The llvm-jitlink tool is updated to use the ORC runtime where available, and
regression tests for the new MachOPlatform support are added to compiler-rt.
Notable changes on the ORC runtime side:
1. The new macho_platform.h / macho_platform.cpp files contain the bulk of the
runtime-side support. This includes eh-frame registration; jit versions of
dlopen, dlsym, and dlclose; a cxa_atexit interpose to record static destructors,
and an '__orc_rt_macho_run_program' function that defines running a JIT'd MachO
program in terms of the jit- dlopen/dlsym/dlclose functions.
2. Replaces JITTargetAddress (and casting operations) with ExecutorAddress
(copied from LLVM) to improve type-safety of address management.
3. Adds serialization support for ExecutorAddress and unordered_map types to
the runtime-side Simple Packed Serialization code.
4. Adds orc-runtime regression tests to ensure that static initializers and
cxa-atexit interposes work as expected.
Notable changes on the LLVM side:
1. The MachOPlatform class is updated to:
1.1. Load the ORC runtime into the ExecutionSession.
1.2. Set up standard aliases for macho-specific runtime functions. E.g.
___cxa_atexit -> ___orc_rt_macho_cxa_atexit.
1.3. Install the MachOPlatformPlugin to scrape LinkGraphs for information
needed to support MachO features (e.g. eh-frames, mod-inits), and
communicate this information to the runtime.
1.4. Provide entry-points that the runtime can call to request initializers,
perform symbol lookup, and request deinitialiers (the latter is
implemented as an empty placeholder as macho object deinits are rarely
used).
1.5. Create a MachO header object for each JITDylib (defining the __mh_header
and __dso_handle symbols).
2. The llvm-jitlink tool (and llvm-jitlink-executor) are updated to use the
runtime when available.
3. A `lookupInitSymbolsAsync` method is added to the Platform base class. This
can be used to issue an async lookup for initializer symbols. The existing
`lookupInitSymbols` method is retained (the GenericIRPlatform code is still
using it), but is deprecated and will be removed soon.
4. JIT-dispatch support code is added to ExecutorProcessControl.
The JIT-dispatch system allows handlers in the JIT process to be associated with
'tag' symbols in the executor, and allows the executor to make remote procedure
calls back to the JIT process (via __orc_rt_jit_dispatch) using those tags.
The primary use case is ORC runtime code that needs to call bakc to handlers in
orc::Platform subclasses. E.g. __orc_rt_macho_jit_dlopen calling back to
MachOPlatform::rt_getInitializers using __orc_rt_macho_get_initializers_tag.
(The system is generic however, and could be used by non-runtime code).
The new ExecutorProcessControl::JITDispatchInfo struct provides the address
(in the executor) of the jit-dispatch function and a jit-dispatch context
object, and implementations of the dispatch function are added to
SelfExecutorProcessControl and OrcRPCExecutorProcessControl.
5. OrcRPCTPCServer is updated to support JIT-dispatch calls over ORC-RPC.
6. Serialization support for StringMap is added to the LLVM-side Simple Packed
Serialization code.
7. A JITLink::allocateBuffer operation is introduced to allocate writable memory
attached to the graph. This is used by the MachO header synthesis code, and will
be generically useful for other clients who want to create new graph content
from scratch.
This patch relands https://reviews.llvm.org/D104799, but fixes the
memory handling causing leak sanitizer failures.
This reverts commit a56fe117e04f7d4b953a4226af412dad59425fb5.
At most these use the StringRef/Twine wrappers and don't have any implicit uses of std::string.
Move the include down to any cpp implementation where std::string is actually used.
Renames CommonOrcRuntimeTypes.h to ExecutorAddress.h and moves ExecutorAddress
into the 'orc' namespace (rather than orc::shared).
Also makes ExecutorAddress a class, adds an ExecutorAddrDiff type and some
arithmetic operations on the pair (subtracting two addresses yields an addrdiff,
adding an addrdiff and an address yields an address).
The computeNamedSymbolDependencies and computeLocalDeps methods on
ObjectLinkingLayerJITLinkContext are responsible for computing, for each symbol
in the current MaterializationResponsibility, the set of non-locally-scoped
symbols that are depended on. To calculate this we have to consider the effect
of chains of dependence through locally scoped symbols in the LinkGraph. E.g.
.text
.globl foo
foo:
callq bar ## foo depneds on external 'bar'
movq Ltmp1(%rip), %rcx ## foo depends on locally scoped 'Ltmp1'
addl (%rcx), %eax
retq
.data
Ltmp1:
.quad x ## Ltmp1 depends on external 'x'
In this example symbol 'foo' depends directly on 'bar', and indirectly on 'x'
via 'Ltmp1', which is locally scoped.
Performance of the existing implementations appears to have been mediocre:
Based on flame graphs posted by @drmeister (in #jit on the LLVM discord server)
the computeLocalDeps function was taking up a substantial amount of time when
starting up Clasp (https://github.com/clasp-developers/clasp).
This commit attempts to address the performance problems in three ways:
1. Using jitlink::Blocks instead of jitlink::Symbols as the nodes of the
dependencies-introduced-by-locally-scoped-symbols graph.
Using either Blocks or Symbols as nodes provides the same information, but since
there may be more than one locally scoped symbol per block the block-based
version of the dependence graph should always be a subgraph of the Symbol-based
version, and so faster to operate on.
2. Improved worklist management.
The older version of computeLocalDeps used a fixed worklist containing all
nodes, and iterated over this list propagating dependencies until no further
changes were required. The worklist was not sorted into a useful order before
the loop started.
The new version uses a variable work-stack, visiting nodes in DFS order and
only adding nodes when there is meaningful work to do on them.
Compared to the old version the new version avoids revisiting nodes which
haven't changed, and I suspect it converges more quickly (due to the DFS
ordering).
3. Laziness and caching.
Mappings of...
jitlink::Symbol* -> Interned Name (as SymbolStringPtr)
jitlink::Block* -> Immediate dependencies (as SymbolNameSet)
jitlink::Block* -> Transitive dependencies (as SymbolNameSet)
are all built lazily and cached while running computeNamedSymbolDependencies.
According to @drmeister these changes reduced Clasp startup time in his test
setup (averaged over a handful of starts) from 4.8 to 2.8 seconds (with
ORC/JITLink linking ~11,000 object files in that time), which seems like
enough to justify switching to the new algorithm in the absence of any other
perf numbers.
MachOJITDylibInitializers::SectionExtent represented the address range of a
section as an (address, size) pair. The new ExecutorAddressRange type
generalizes this to an address range (for any object, not necessarily a section)
represented as a (start-address, end-address) pair.
The aim is to express more of ORC (and the ORC runtime) in terms of simple types
that can be serialized/deserialized via SPS. This will simplify SPS-based RPC
involving arguments/return-values of these types.
Adds support for both synchronous and asynchronous calls to wrapper functions
using SPS (Simple Packed Serialization). Also adds support for wrapping
functions on the JIT side in SPS-based wrappers that can be called from the
executor.
These new methods simplify calls between the JIT and Executor, and will be used
in upcoming ORC runtime patches to enable communication between ORC and the
runtime.
This is a first step towards consistently using the term 'executor' for the
process that executes JIT'd code. I've opted for 'executor' as the preferred
term over 'target' as target is already heavily overloaded ("the target
machine for the executor" is much clearer than "the target machine for the
target").
ELFLinkGraphBuilder<ELFT> will hold generic parsing and LinkGraph-building code
that can be shared between JITLink ELF backends for different architectures.
For now it's just a stub. The plan is to incrementally move functionality down
from ELFLinkGraphBuilder_x86_64 into the new template.
This patch was derived from Valentin Churavy's work in
https://reviews.llvm.org/D104480. It adds support for setting the transform on
an IRTransformLayer, and for accessing the IRTransformLayer in LLJIT. It also
adds access to the ThreadSafeModule::withModuleDo method for thread-safe
access to modules.
A new example has been added to show how to use these APIs to optimize a module
during materialization.
Thanks Valentin!
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D103855
Provides ObjectTransformLayer APIs, a getter to access the
ObjectTransformLayer member of LLJIT, and the DumpObjects utility
to make construction of a dump-to-disk transform easy.
An example showing how the new APIs can be used has been added in
llvm/examples/OrcV2Examples/OrcV2CBindingsDumpObjects.
Addresses FIXMEs in TPC-based EH-frame and debug object registration code by
replacing manual argument serialization with WrapperFunction utility calls.
Replace the existing WrapperFunctionResult type in
llvm/include/ExecutionEngine/Orc/Shared/TargetProcessControlTypes.h with a
version adapted from the ORC runtime's implementation.
Also introduce the SimplePackedSerialization scheme (also adapted from the ORC
runtime's implementation) for wrapper functions to avoid manual serialization
and deserialization for calls to runtime functions involving common types.
The C-string section splitting support added in f9649d123db triggered an assert
("Duplicate canonical symbol at address") when multiple symbols were defined at
the the same offset within a C-string block (this triggered on arm64, where we
always add a block start symbol). The bug was caused by a failure to update the
record of the last canonical symbol address. The fix was to maintain this record
correctly, and move the auto-generation of the block-start symbol above the
handling for symbols defined in the object itself so that all symbols
(auto-generated and defined) are processed in address order.
MachO C-string literal sections should be split on null-terminator boundaries,
rather than the usual symbol boundaries. This patch updates
MachOLinkGraphBuilder to do that.
As suggested on rG937c4cffd024, use llvm_unreachable for unhandled integer types (which shouldn't be possible) instead of breaking and dropping down to the existing fatal error handler.
Helps silence static analyzer warnings.
During the generic x86-64 support refactor in ecf6466f01c52 the implementation
of MachO_arm64_GOTAndStubsBuilder::isGOTEdgeToFix was altered to only return
true for external symbols. This behavior is incorrect: GOT entries may be
required for defined symbols (e.g. in the large code model).
This patch fixes the bug and adds a test case for it (renaming an old test
case to avoid any ambiguity).
Currently, BPF only contains three relocations:
R_BPF_NONE for no relocation
R_BPF_64_64 for LD_imm64 and normal 64-bit data relocation
R_BPF_64_32 for call insn and normal 32-bit data relocation
Also .BTF and .BTF.ext sections contain symbols in allocated
program and data sections. These two sections reserved 32bit
space to hold the offset relative to the symbol's section.
When LLVM JIT is used, the LLVM ExecutionEngine RuntimeDyld
may attempt to resolve relocations for .BTF and .BTF.ext,
which we want to prevent. So we used R_BPF_NONE for such relocations.
This all works fine until when we try to do linking of
multiple objects.
. R_BPF_64_64 handling of LD_imm64 vs. normal 64-bit data
is different, so lld target->relocate() needs more context
to do a correct job.
. The same for R_BPF_64_32. More context is needed for
lld target->relocate() to differentiate call insn vs.
normal 32-bit data relocation.
. Since relocations in .BTF and .BTF.ext are set to R_BPF_NONE,
they will not be relocated properly when multiple .BTF/.BTF.ext
sections are merged by lld.
This patch intends to address this issue by adding additional
relocation kinds:
R_BPF_64_ABS64 for normal 64-bit data relocation
R_BPF_64_ABS32 for normal 32-bit data relocation
R_BPF_64_NODYLD32 for .BTF and .BTF.ext style relocations.
The old R_BPF_64_{64,32} semantics:
R_BPF_64_64 for LD_imm64 relocation
R_BPF_64_32 for call insn relocation
The existing R_BPF_64_64/R_BPF_64_32 mapping to numeric values
is maintained. They are the most common use cases for
bpf programs and we want to maintain backward compatibility
as much as possible.
ExecutionEngine RuntimeDyld BPF relocations are adjusted as well.
R_BPF_64_{ABS64,ABS32} relocations will be resolved properly and
other relocations will be ignored.
Two tests are added for RuntimeDyld. Not handling R_BPF_64_NODYLD32 in
RuntimeDyldELF.cpp will result in "Relocation type not implemented yet!"
fatal error.
FK_SecRel_4 usages in BPFAsmBackend.cpp and BPFELFObjectWriter.cpp
are removed as they are not triggered in BPF backend.
BPF backend used FK_SecRel_8 for LD_imm64 instruction operands.
Differential Revision: https://reviews.llvm.org/D102712
This patch introduces new operations on jitlink::Blocks: setMutableContent,
getMutableContent and getAlreadyMutableContent. The setMutableContent method
will set the block content data and size members and flag the content as
mutable. The getMutableContent method will return a mutable copy of the existing
content value, auto-allocating and populating a new mutable copy if the existing
content is marked immutable. The getAlreadyMutableMethod asserts that the
existing content is already mutable and returns it.
setMutableContent should be used when updating the block with totally new
content backed by mutable memory. It can be used to change the size of the
block. The argument value should *not* be shared with any other block.
getMutableContent should be used when clients want to modify the existing
content and are unsure whether it is mutable yet.
getAlreadyMutableContent should be used when clients want to modify the existing
content and know from context that it must already be immutable.
These operations reduce copy-modify-update boilerplate and unnecessary copies
introduced when clients couldn't me sure whether the existing content was
mutable or not.
The implementation and intent behind freeing the triple string here is the same
as LLVMGetDefaultTargetTriple (and any other owned c string returned from the C
API), so we should use LLVMDisposeMessage for to free the string for
consistency.
Patch by Mats Larsen -- thanks Mats!
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D102957