1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-27 22:12:47 +01:00
Commit Graph

15 Commits

Author SHA1 Message Date
Ulrich Weigand
e5affb6d66 [PowerPC] Add extended rotate/shift mnemonics
This adds all missing extended rotate/shift mnemonics to the asm parser.

llvm-svn: 184834
2013-06-25 13:17:41 +00:00
Ulrich Weigand
d51b3cd01b [PowerPC] Add extended subtract mnemonics
This adds support for the extended subtract mnemonics to the asm parser:
   subi
   subis
   subic
   subic.
   sub
   sub.
   subc
   subc.
 

llvm-svn: 184832
2013-06-25 13:16:48 +00:00
NAKAMURA Takumi
c0b121df0b PPCAsmParser.cpp: Quote "@l/@ha" in comments. [-Wdocumentation]
llvm-svn: 184809
2013-06-25 01:14:20 +00:00
Ulrich Weigand
655ef3283d [PowerPC] Support some miscellaneous mnemonics in the asm parser
This adds support for the following extended mnemonics:
  xnop
  mr.
  not
  not.
  la

llvm-svn: 184767
2013-06-24 18:08:03 +00:00
Ulrich Weigand
719e95004a [PowerPC] Add predicted forms of branches
This adds support for the predicted forms of branches (+/-).
There are three cases to consider:
- Branches using a PPC::Predicate code
  For these, I've added new PPC::Predicate codes corresponding
  to the BO values for predicted branch forms, and updated insn
  printing to print them correctly.  I've also added new aliases
  for the asm parser matching the new forms.
- bt/bf
  I've added new aliases matching to gBC etc.
- bd(n)z variants
  I've added new instruction patterns for the predicted forms.

In all cases, the new patterns are used for the asm parser only.
(The new infrastructure ought to be sufficient to allow use by
the compiler too at some point.)

llvm-svn: 184754
2013-06-24 16:52:04 +00:00
Ulrich Weigand
0dd44327b0 [PowerPC] Support absolute branches
There is currently only limited support for the "absolute" variants
of branch instructions.  This patch adds support for the absolute
variants of all branches that are currently otherwise supported.

This requires adding new fixup types so that the correct variant
of relocation type can be selected by the object writer.

While the compiler will continue to usually choose the relative
branch variants, this will allow the asm parser to fully support
the absolute branches, with either immediate (numerical) or
symbolic target addresses.

No change in code generation intended.

llvm-svn: 184721
2013-06-24 11:03:33 +00:00
Ulrich Weigand
325653d5a4 [PowerPC] Support @higher et.al. modifiers
This adds support for the @higher, @highera, @highest, and @highesta
modifers, including some missing relocation types.

llvm-svn: 184550
2013-06-21 14:43:42 +00:00
Ulrich Weigand
02d460319a [PowerPC] Support @h modifier
This adds necessary infrastructure to support the @h modifier.
Note that all required relocation types were already present
(and unused).

This patch provides support for using @h in the assembler;
it would also be possible to now use this feature in code
generated by the compiler, but this is not done yet.

llvm-svn: 184548
2013-06-21 14:42:49 +00:00
Ulrich Weigand
1b20b9f662 [PowerPC] Rename some more VK_PPC_ enums
This renames more VK_PPC_ enums, to make them more closely reflect
the @modifier string they represent.  This also prepares for adding
a bunch of new VK_PPC_ enums in upcoming patches.

For consistency, some MO_ flags related to VK_PPC_ enums are
likewise renamed.

No change in behaviour.

llvm-svn: 184547
2013-06-21 14:42:20 +00:00
Ulrich Weigand
99f0423d50 [PowerPC] Optimize @ha/@l constructs
This patch adds support for having the assembler optimize fixups
to constructs like "symbol@ha" or "symbol@l" if "symbol" can be
resolved at assembler time.

This optimization is already present in the PPCMCExpr.cpp code
for handling PPC_HA16/PPC_LO16 target expressions.  However,
those target expression were used only on Darwin targets.

This patch changes target expression code so that they are
usable also with the GNU assembler (using the @ha / @l syntax
instead of the ha16() / lo16() syntax), and changes the
MCInst lowering code to generate those target expressions
where appropriate.

It also changes the asm parser to generate HA16/LO16 target
expressions when parsing assembler source that uses the
@ha / @l modifiers.  The effect is that now the above-
mentioned optimization automatically becomes available
for those situations too.
 

llvm-svn: 184436
2013-06-20 16:23:52 +00:00
Michael J. Spencer
c195b8a813 Replace Count{Leading,Trailing}Zeros_{32,64} with count{Leading,Trailing}Zeros.
llvm-svn: 182680
2013-05-24 22:23:49 +00:00
Ulrich Weigand
7b22c7a38a [PowerPC] Use true offset value in "memrix" machine operands
This is the second part of the change to always return "true"
offset values from getPreIndexedAddressParts, tackling the
case of "memrix" type operands.

This is about instructions like LD/STD that only have a 14-bit
field to encode immediate offsets, which are implicitly extended
by two zero bits by the machine, so that in effect we can access
16-bit offsets as long as they are a multiple of 4.

The PowerPC back end currently handles such instructions by
carrying the 14-bit value (as it will get encoded into the
actual machine instructions) in the machine operand fields
for such instructions.  This means that those values are
in fact not the true offset, but rather the offset divided
by 4 (and then truncated to an unsigned 14-bit value).

Like in the case fixed in r182012, this makes common code
operations on such offset values not work as expected.
Furthermore, there doesn't really appear to be any strong
reason why we should encode machine operands this way.

This patch therefore changes the encoding of "memrix" type
machine operands to simply contain the "true" offset value
as a signed immediate value, while enforcing the rules that
it must fit in a 16-bit signed value and must also be a
multiple of 4.

This change must be made simultaneously in all places that
access machine operands of this type.  However, just about
all those changes make the code simpler; in many cases we
can now just share the same code for memri and memrix
operands.

llvm-svn: 182032
2013-05-16 17:58:02 +00:00
Ulrich Weigand
d9194d871d [PowerPC] Fix memory corruption in AsmParser
As pointed out by Evgeniy Stepanov, assigning a std::string temporary
to a StringRef is not a good idea.  Rework MatchRegisterName to avoid
using the .lower routine.

llvm-svn: 181192
2013-05-06 11:16:57 +00:00
Ulrich Weigand
4b44c2d06f [PowerPC] Support extended mnemonics in AsmParser
This patch adds infrastructure to support extended mnemonics in the
PowerPC assembler parser.  It adds support specifically for those
extended mnemonics that LLVM will itself generate.

The test case lists *all* extended mnemonics according to the
PowerPC ISA v2.06 Book I, but marks those not yet supported
as FIXME.

llvm-svn: 181051
2013-05-03 19:50:27 +00:00
Ulrich Weigand
d9b4cff835 [PowerPC] Add assembler parser
This adds assembler parser support to the PowerPC back end.

The parser will run for any powerpc-*-* and powerpc64-*-* triples,
but was tested only on 64-bit Linux.  The supported syntax is
intended to be compatible with the GNU assembler.

The parser does not yet support all PowerPC instructions, but
it does support anything that is generated by LLVM itself.
There is no support for testing restricted instruction sets yet,
i.e. the parser will always accept any instructions it knows,
no matter what feature flags are given.

Instruction operands will be checked for validity and errors
generated.  (Error handling in general could still be improved.)

The patch adds a number of test cases to verify instruction
and operand encodings.  The tests currently cover all instructions
from the following PowerPC ISA v2.06 Book I facilities:
Branch, Fixed-point, Floating-Point, and Vector. 
Note that a number of these instructions are not yet supported
by the back end; they are marked with FIXME.

A number of follow-on check-ins will add extra features.  When
they are all included, LLVM passes all tests (including bootstrap)
when using clang -cc1as as the system assembler.

llvm-svn: 181050
2013-05-03 19:49:39 +00:00