1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-22 20:43:44 +02:00
Commit Graph

42 Commits

Author SHA1 Message Date
Chandler Carruth
c47432114d [PM] Split the LoopInfo object apart from the legacy pass, creating
a LoopInfoWrapperPass to wire the object up to the legacy pass manager.

This switches all the clients of LoopInfo over and paves the way to port
LoopInfo to the new pass manager. No functionality change is intended
with this iteration.

llvm-svn: 226373
2015-01-17 14:16:18 +00:00
David Blaikie
60e6c80905 Update SetVector to rely on the underlying set's insert to return a pair<iterator, bool>
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.

This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...

llvm-svn: 222334
2014-11-19 07:49:26 +00:00
Diego Novillo
ba36fbe7cb Use ErrorOr for the ::create factory on instrumented and sample profilers.
Summary:
As discussed in
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20141027/242445.html,
the creation of reader and writer instances is better done using
ErrorOr. There are no functional changes, but several callers needed to
be adjusted.

Reviewers: bogner

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D6076

llvm-svn: 221120
2014-11-03 00:51:45 +00:00
Diego Novillo
83d52f4c02 Fix Twine corruption problem with diagnostics.
This fixes the autobuilders I broke with a recent patch. Thanks echristo
and dblaikie for beating me with a clue stick.

llvm-svn: 220918
2014-10-30 18:48:41 +00:00
Diego Novillo
a5ff3524ec Add profile writing capabilities for sampling profiles.
Summary:
This patch finishes up support for handling sampling profiles in both
text and binary formats. The new binary format uses uleb128 encoding to
represent numeric values. This makes profiles files about 25% smaller.

The profile writer class can write profiles in the existing text and the
new binary format. In subsequent patches, I will add the capability to
read (and perhaps write) profiles in the gcov format used by GCC.

Additionally, I will be adding support in llvm-profdata to manipulate
sampling profiles.

There was a bit of refactoring needed to separate some code that was in
the reader files, but is actually common to both the reader and writer.

The new test checks that reading the same profile encoded as text or
raw, produces the same results.

Reviewers: bogner, dexonsmith

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D6000

llvm-svn: 220915
2014-10-30 18:00:06 +00:00
Timur Iskhodzhanov
1a7cffcda9 Make getDISubprogram(const Function *F) available in LLVM
Reviewed at http://reviews.llvm.org/D5950

llvm-svn: 220536
2014-10-23 23:46:28 +00:00
Diego Novillo
e87aec19c1 Shorten auto iterators for function basic blocks.
Use consistent naming for basic block instances.

No functional changes.

llvm-svn: 220404
2014-10-22 18:39:50 +00:00
Diego Novillo
bdc18f1388 Use auto iteration in lib/Transforms/Scalar/SampleProfile.cpp. No functional changes.
llvm-svn: 220394
2014-10-22 16:51:50 +00:00
Diego Novillo
d46a4d6eb2 Change error to warning when a profile cannot be found.
When the profile for a function cannot be applied, we use to emit an
error. This seems extreme. The compiler can continue, it's just that the
optimization opportunities won't include profile information.

llvm-svn: 220386
2014-10-22 13:36:35 +00:00
Diego Novillo
f3c6118ba0 Support using sample profiles with partial debug info.
Summary:
When using a profile, we used to require the use -gmlt so that we could
get access to the line locations. This is used to match line numbers in
the input profile to the line numbers in the function's IR.

But this is actually not necessary. The driver can provide source
location tracking without the emission of debug information. In these
cases, the annotation 'llvm.dbg.cu' is missing from the IR, but the
actual line location annotations are still present.

This patch adds a new way of looking for the start of the current
function. Instead of looking through the compile units in llvm.dbg.cu,
we can walk up the scope for the first instruction in the function with
a debug loc. If that describes the function, we use it. Otherwise, we
keep looking until we find one.

If no such instruction is found, we then give up and produce an error.

Reviewers: echristo, dblaikie

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D5887

llvm-svn: 220382
2014-10-22 12:59:00 +00:00
NAKAMURA Takumi
43b69b3eb2 SampleProfile.cpp: Prune a stray \param added in r217437. [-Wdocumentation]
llvm-svn: 217465
2014-09-09 22:44:30 +00:00
Diego Novillo
db1c3903c1 Re-factor sample profile reader into lib/ProfileData.
Summary:
This patch moves the profile reading logic out of the Sample Profile
transformation into a generic profile reader facility in
lib/ProfileData.

The intent is to use this new reader to implement a sample profile
reader/writer that can be used to convert sample profiles from external
sources into LLVM.

This first patch introduces no functional changes. It moves the profile
reading code from lib/Transforms/SampleProfile.cpp into
lib/ProfileData/SampleProfReader.cpp.

In subsequent patches I will:

- Add a bitcode format for sample profiles to allow for more efficient
  encoding of the profile.
- Add a writer for both text and bitcode format profiles.
- Add a 'convert' command to llvm-profdata to be able to convert between
  the two (and serve as entry point for other sample profile formats).

Reviewers: bogner, echristo

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D5250

llvm-svn: 217437
2014-09-09 12:40:50 +00:00
Rafael Espindola
19e7ab14ac Remove some calls to std::move.
Instead of moving out the data in a ErrorOr<std::unique_ptr<Foo>>, get
a reference to it.

Thanks to David Blaikie for the suggestion.

llvm-svn: 214516
2014-08-01 14:31:55 +00:00
Duncan P. N. Exon Smith
2ae51d315c Revert "[C++11] Add predecessors(BasicBlock *) / successors(BasicBlock *) iterator ranges."
This reverts commit r213474 (and r213475), which causes a miscompile on
a stage2 LTO build.  I'll reply on the list in a moment.

llvm-svn: 213562
2014-07-21 17:06:51 +00:00
Manuel Jacob
8e924ddc40 [C++11] Add predecessors(BasicBlock *) / successors(BasicBlock *) iterator ranges.
Summary: This patch introduces two new iterator ranges and updates existing code to use it.  No functional change intended.

Test Plan: All tests (make check-all) still pass.

Reviewers: dblaikie

Reviewed By: dblaikie

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D4481

llvm-svn: 213474
2014-07-20 09:10:11 +00:00
Rafael Espindola
858b9e1423 Update the MemoryBuffer API to use ErrorOr.
llvm-svn: 212405
2014-07-06 17:43:13 +00:00
Rafael Espindola
98710599c1 Remove 'using std::errro_code' from lib.
llvm-svn: 210871
2014-06-13 02:24:39 +00:00
Rafael Espindola
e0e308ff6d Don't use 'using std::error_code' in include/llvm.
This should make sure that most new uses use the std prefix.

llvm-svn: 210835
2014-06-12 21:46:39 +00:00
Craig Topper
c0a2a29f4e [C++] Use 'nullptr'. Transforms edition.
llvm-svn: 207196
2014-04-25 05:29:35 +00:00
Chandler Carruth
6f9ba6a633 [Modules] Fix potential ODR violations by sinking the DEBUG_TYPE
definition below all of the header #include lines, lib/Transforms/...
edition.

This one is tricky for two reasons. We again have a couple of passes
that define something else before the includes as well. I've sunk their
name macros with the DEBUG_TYPE.

Also, InstCombine contains headers that need DEBUG_TYPE, so now those
headers #define and #undef DEBUG_TYPE around their code, leaving them
well formed modular headers. Fixing these headers was a large motivation
for all of these changes, as "leaky" macros of this form are hard on the
modules implementation.

llvm-svn: 206844
2014-04-22 02:55:47 +00:00
Alp Toker
111bd28e59 Fix some doc and comment typos
llvm-svn: 205899
2014-04-09 14:47:27 +00:00
Diego Novillo
119221ccbc Tolerate unmangled names in sample profiles.
Summary:
The compiler does not always generate linkage names. If a function
has been inlined and its body elided, its linkage name may not be
generated.

When the binary executes, the profiler will use its unmangled name
when attributing samples. This results in unmangled names in the
input profile.

We are currently failing hard when this happens. However, in this case
all that happens is that we fail to attribute samples to the inlined
function. While this means fewer optimization opportunities, it should
not cause a compilation failure.

This patch accepts all valid function names, regardless of whether
they were mangled or not.

Reviewers: chandlerc

CC: llvm-commits

Differential Revision: http://llvm-reviews.chandlerc.com/D3087

llvm-svn: 204142
2014-03-18 12:03:12 +00:00
David Blaikie
60ddd2b93c Remove named Twine.
While technically correct, we generally disallow any instance of named
Twines due to their subtlety.

llvm-svn: 204016
2014-03-16 01:36:18 +00:00
NAKAMURA Takumi
2d8e94aadc SampleProfile.cpp: Fix take #2. The issue was abuse of StringRef here.
llvm-svn: 203996
2014-03-15 01:56:17 +00:00
NAKAMURA Takumi
8cb5938310 SampleProfile.cpp: Quick fix to r203976 about abuse of Twine. The life of Twine was too short.
FIXME: DiagnosticInfoSampleProfile should not hold Twine&.
llvm-svn: 203990
2014-03-15 00:10:12 +00:00
Diego Novillo
6368420655 Re-format SampleProfile.cpp with clang-format. No functional changes.
llvm-svn: 203977
2014-03-14 22:07:18 +00:00
Diego Novillo
a9a26c6236 Use DiagnosticInfo facility.
Summary:
The sample profiler pass emits several error messages. Instead of
just aborting the compiler with report_fatal_error, we can emit
better messages using DiagnosticInfo.

This adds a new sub-class of DiagnosticInfo to handle the sample
profiler.

Reviewers: chandlerc, qcolombet

CC: llvm-commits

Differential Revision: http://llvm-reviews.chandlerc.com/D3086

llvm-svn: 203976
2014-03-14 21:58:59 +00:00
Diego Novillo
dd37be24ca Use discriminator information in sample profiles.
Summary:
When the sample profiles include discriminator information,
use the discriminator values to distinguish instruction weights
in different basic blocks.

This modifies the BodySamples mapping to map <line, discriminator> pairs
to weights. Instructions on the same line but different blocks, will
use different discriminator values. This, in turn, means that the blocks
may have different weights.

Other changes in this patch:

- Add tests for positive values of line offset, discriminator and samples.
- Change data types from uint32_t to unsigned and int and do additional
  validation.

Reviewers: chandlerc

CC: llvm-commits

Differential Revision: http://llvm-reviews.chandlerc.com/D2857

llvm-svn: 203508
2014-03-10 22:41:28 +00:00
Ahmed Charles
52ce0c101e Replace OwningPtr<T> with std::unique_ptr<T>.
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.

llvm-svn: 203083
2014-03-06 05:51:42 +00:00
Chandler Carruth
0873afae39 [Layering] Move DebugInfo.h into the IR library where its implementation
already lives.

llvm-svn: 203046
2014-03-06 00:46:21 +00:00
Craig Topper
a3683ec835 [C++11] Add 'override' keyword to virtual methods that override their base class.
llvm-svn: 202953
2014-03-05 09:10:37 +00:00
Chandler Carruth
d7b36fdea7 [Modules] Move InstIterator out of the Support library, where it had no
business.

This header includes Function and BasicBlock and directly uses the
interfaces of both classes. It has to do with the IR, it even has that
in the name. =] Put it in the library it belongs to.

This is one step toward making LLVM's Support library survive a C++
modules bootstrap.

llvm-svn: 202814
2014-03-04 10:30:26 +00:00
Logan Chien
6cc287e13e Include <cctype> for isdigit().
llvm-svn: 201930
2014-02-22 06:34:10 +00:00
Chandler Carruth
98adff6224 [PM] Split DominatorTree into a concrete analysis result object which
can be used by both the new pass manager and the old.

This removes it from any of the virtual mess of the pass interfaces and
lets it derive cleanly from the DominatorTreeBase<> template. In turn,
tons of boilerplate interface can be nuked and it turns into a very
straightforward extension of the base DominatorTree interface.

The old analysis pass is now a simple wrapper. The names and style of
this split should match the split between CallGraph and
CallGraphWrapperPass. All of the users of DominatorTree have been
updated to match using many of the same tricks as with CallGraph. The
goal is that the common type remains the resulting DominatorTree rather
than the pass. This will make subsequent work toward the new pass
manager significantly easier.

Also in numerous places things became cleaner because I switched from
re-running the pass (!!! mid way through some other passes run!!!) to
directly recomputing the domtree.

llvm-svn: 199104
2014-01-13 13:07:17 +00:00
Chandler Carruth
ee051af6e2 [cleanup] Move the Dominators.h and Verifier.h headers into the IR
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.

Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.

But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.

llvm-svn: 199082
2014-01-13 09:26:24 +00:00
Chandler Carruth
03b6c941a3 Re-sort #include lines again, prior to moving headers around.
llvm-svn: 199080
2014-01-13 08:04:33 +00:00
Diego Novillo
f47aa4d47f Extend and simplify the sample profile input file.
1- Use the line_iterator class to read profile files.

2- Allow comments in profile file. Lines starting with '#'
   are completely ignored while reading the profile.

3- Add parsing support for discriminators and indirect call samples.

   Our external profiler can emit more profile information that we are
   currently not handling. This patch does not add new functionality to
   support this information, but it allows profile files to provide it.

   I will add actual support later on (for at least one of these
   features, I need support for DWARF discriminators in Clang).

   A sample line may contain the following additional information:

   Discriminator. This is used if the sampled program was compiled with
   DWARF discriminator support
   (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators). This
   is currently only emitted by GCC and we just ignore it.

   Potential call targets and samples. If present, this line contains a
   call instruction. This models both direct and indirect calls. Each
   called target is listed together with the number of samples. For
   example,

                    130: 7  foo:3  bar:2  baz:7

   The above means that at relative line offset 130 there is a call
   instruction that calls one of foo(), bar() and baz(). With baz()
   being the relatively more frequent call target.

   Differential Revision: http://llvm-reviews.chandlerc.com/D2355

4- Simplify format of profile input file.

   This implements earlier suggestions to simplify the format of the
   sample profile file. The symbol table is not necessary and function
   profiles do not need to know the number of samples in advance.

   Differential Revision: http://llvm-reviews.chandlerc.com/D2419

llvm-svn: 198973
2014-01-10 23:23:51 +00:00
Diego Novillo
9e8454b3fe Propagation of profile samples through the CFG.
This adds a propagation heuristic to convert instruction samples
into branch weights. It implements a similar heuristic to the one
implemented by Dehao Chen on GCC.

The propagation proceeds in 3 phases:

1- Assignment of block weights. All the basic blocks in the function
   are initial assigned the same weight as their most frequently
   executed instruction.

2- Creation of equivalence classes. Since samples may be missing from
   blocks, we can fill in the gaps by setting the weights of all the
   blocks in the same equivalence class to the same weight. To compute
   the concept of equivalence, we use dominance and loop information.
   Two blocks B1 and B2 are in the same equivalence class if B1
   dominates B2, B2 post-dominates B1 and both are in the same loop.

3- Propagation of block weights into edges. This uses a simple
   propagation heuristic. The following rules are applied to every
   block B in the CFG:

   - If B has a single predecessor/successor, then the weight
     of that edge is the weight of the block.

   - If all the edges are known except one, and the weight of the
     block is already known, the weight of the unknown edge will
     be the weight of the block minus the sum of all the known
     edges. If the sum of all the known edges is larger than B's weight,
     we set the unknown edge weight to zero.

   - If there is a self-referential edge, and the weight of the block is
     known, the weight for that edge is set to the weight of the block
     minus the weight of the other incoming edges to that block (if
     known).

Since this propagation is not guaranteed to finalize for every CFG, we
only allow it to proceed for a limited number of iterations (controlled
by -sample-profile-max-propagate-iterations). It currently uses the same
GCC default of 100.

Before propagation starts, the pass builds (for each block) a list of
unique predecessors and successors. This is necessary to handle
identical edges in multiway branches. Since we visit all blocks and all
edges of the CFG, it is cleaner to build these lists once at the start
of the pass.

Finally, the patch fixes the computation of relative line locations.
The profiler emits lines relative to the function header. To discover
it, we traverse the compilation unit looking for the subprogram
corresponding to the function. The line number of that subprogram is the
line where the function begins. That becomes line zero for all the
relative locations.

llvm-svn: 198972
2014-01-10 23:23:46 +00:00
Chandler Carruth
87f14b4eec Re-sort all of the includes with ./utils/sort_includes.py so that
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.

Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.

llvm-svn: 198685
2014-01-07 11:48:04 +00:00
Diego Novillo
0929297da9 Refactor some code in SampleProfile.cpp
I'm adding new functionality in the sample profiler. This will
require more data to be kept around for each function, so I moved
the structure SampleProfile that we keep for each function into
a separate class.

There are no functional changes in this patch. It simply provides
a new home where to place all the new data that I need to propagate
weights through edges.

There are some other name and minor edits throughout.

llvm-svn: 195780
2013-11-26 20:37:33 +00:00
Alexey Samsonov
89a2c4d5df Fix -Wdelete-non-virtual-dtor warnings by making SampleProfile methods non-virtual
llvm-svn: 194568
2013-11-13 13:09:39 +00:00
Diego Novillo
7b4e2dda6b SampleProfileLoader pass. Initial setup.
This adds a new scalar pass that reads a file with samples generated
by 'perf' during runtime. The samples read from the profile are
incorporated and emmited as IR metadata reflecting that profile.

The profile file is assumed to have been generated by an external
profile source. The profile information is converted into IR metadata,
which is later used by the analysis routines to estimate block
frequencies, edge weights and other related data.

External profile information files have no fixed format, each profiler
is free to define its own. This includes both the on-disk representation
of the profile and the kind of profile information stored in the file.
A common kind of profile is based on sampling (e.g., perf), which
essentially counts how many times each line of the program has been
executed during the run.

The SampleProfileLoader pass is organized as a scalar transformation.
On startup, it reads the file given in -sample-profile-file to
determine what kind of profile it contains.  This file is assumed to
contain profile information for the whole application. The profile
data in the file is read and incorporated into the internal state of
the corresponding profiler.

To facilitate testing, I've organized the profilers to support two file
formats: text and native. The native format is whatever on-disk
representation the profiler wants to support, I think this will mostly
be bitcode files, but it could be anything the profiler wants to
support. To do this, every profiler must implement the
SampleProfile::loadNative() function.

The text format is mostly meant for debugging. Records are separated by
newlines, but each profiler is free to interpret records as it sees fit.
Profilers must implement the SampleProfile::loadText() function.

Finally, the pass will call SampleProfile::emitAnnotations() for each
function in the current translation unit. This function needs to
translate the loaded profile into IR metadata, which the analyzer will
later be able to use.

This patch implements the first steps towards the above design. I've
implemented a sample-based flat profiler. The format of the profile is
fairly simplistic. Each sampled function contains a list of relative
line locations (from the start of the function) together with a count
representing how many samples were collected at that line during
execution. I generate this profile using perf and a separate converter
tool.

Currently, I have only implemented a text format for these profiles. I
am interested in initial feedback to the whole approach before I send
the other parts of the implementation for review.

This patch implements:

- The SampleProfileLoader pass.
- The base ExternalProfile class with the core interface.
- A SampleProfile sub-class using the above interface. The profiler
  generates branch weight metadata on every branch instructions that
  matches the profiles.
- A text loader class to assist the implementation of
  SampleProfile::loadText().
- Basic unit tests for the pass.

Additionally, the patch uses profile information to compute branch
weights based on instruction samples.

This patch converts instruction samples into branch weights. It
does a fairly simplistic conversion:

Given a multi-way branch instruction, it calculates the weight of
each branch based on the maximum sample count gathered from each
target basic block.

Note that this assignment of branch weights is somewhat lossy and can be
misleading. If a basic block has more than one incoming branch, all the
incoming branches will get the same weight. In reality, it may be that
only one of them is the most heavily taken branch.

I will adjust this assignment in subsequent patches.

llvm-svn: 194566
2013-11-13 12:22:21 +00:00