But this is incorrect if the spilled value live range extends beyond the
current BB.
It is currently controlled by a temporary option -spiller-check-liveout.
llvm-svn: 28024
For example, we can now join things like [0-30:0)[31-40:1)[52-59:2)
with [40:60:0) if the 52-59 range is defined by a copy from the 40-60 range.
The resultant range ends up being [0-30:0)[31-60:1).
This fires a lot through-out the test suite (e.g. shrinking bc from
19492 -> 18509 machineinstrs) though most gains are smaller (e.g. about
50 copies eliminated from crafty).
llvm-svn: 23866
only add a reload live range once for the instruction. This is one step
towards fixing a regalloc pessimization that Nate notice, but is later undone
by the spiller (so no code is changed).
llvm-svn: 23293
numbering values in live ranges for physical registers.
The alpha backend currently generates code that looks like this:
vreg = preg
...
preg = vreg
use preg
...
preg = vreg
use preg
etc. Because vreg contains the value of preg coming in, each of the
copies back into preg contain that initial value as well.
In the case of the Alpha, this allows this testcase:
void "foo"(int %blah) {
store int 5, int *%MyVar
store int 12, int* %MyVar2
ret void
}
to compile to:
foo:
ldgp $29, 0($27)
ldiq $0,5
stl $0,MyVar
ldiq $0,12
stl $0,MyVar2
ret $31,($26),1
instead of:
foo:
ldgp $29, 0($27)
bis $29,$29,$0
ldiq $1,5
bis $0,$0,$29
stl $1,MyVar
ldiq $1,12
bis $0,$0,$29
stl $1,MyVar2
ret $31,($26),1
This does not seem to have any noticable effect on X86 code.
This fixes PR535.
llvm-svn: 20536
it was a use, def, or both. This allows us to be less pessimistic in our
analysis of them. In practice, this doesn't make a big difference, but it
doesn't hurt either.
llvm-svn: 16632
Move include/Config and include/Support into include/llvm/Config,
include/llvm/ADT and include/llvm/Support. From here on out, all LLVM
public header files must be under include/llvm/.
llvm-svn: 16137
Regression.CodeGen.Generic.2004-04-09-SameValueCoalescing.llx and the
code size problem.
This bug prevented us from doing most register coallesces.
llvm-svn: 16031
same as the PHI use. This is not correct as the PHI use value is different
depending on which branch is taken. This fixes espresso with aggressive
coallescing, and perhaps others.
llvm-svn: 15189
Interval. This generalizes the isDefinedOnce mechanism that we used before
to help us coallesce ranges that overlap. As part of this, every logical
range with a different value is assigned a different number in the interval.
For example, for code that looks like this:
0 X = ...
4 X += ...
...
N = X
We now generate a live interval that contains two ranges: [2,6:0),[6,?:1)
reflecting the fact that there are two different values in the range at
different positions in the code.
Currently we are not using this information at all, so this just slows down
liveintervals. In the future, this will change.
Note that this change also substantially refactors the joinIntervalsInMachineBB
method to merge the cases for virt-virt and phys-virt joining into a single
case, adds comments, and makes the code a bit easier to follow.
llvm-svn: 15154