return types.
This class allows user provided handlers to return either error-wrapped types
or plain types. In the latter case, the plain type is wrapped with a success
value of Error or Expected<T> type to fit it into the rest of the serialization
machinery.
This patch allows us to remove the RPC unit-test workaround added in r286646.
llvm-svn: 286701
This is a temporary fix: The right solution is to make sure addHandler can
support mutable lambdas. I'll add that in a follow-up patch.
llvm-svn: 286661
(1) Add support for function key negotiation.
The previous version of the RPC required both sides to maintain the same
enumeration for functions in the API. This means that any version skew between
the client and server would result in communication failure.
With this version of the patch functions (and serializable types) are defined
with string names, and the derived function signature strings are used to
negotiate the actual function keys (which are used for efficient call
serialization). This allows clients to connect to any server that supports a
superset of the API (based on the function signatures it supports).
(2) Add a callAsync primitive.
The callAsync primitive can be used to install a return value handler that will
run as soon as the RPC function's return value is sent back from the remote.
(3) Launch policies for RPC function handlers.
The new addHandler method, which installs handlers for RPC functions, takes two
arguments: (1) the handler itself, and (2) an optional "launch policy". When the
RPC function is called, the launch policy (if present) is invoked to actually
launch the handler. This allows the handler to be spawned on a background
thread, or added to a work list. If no launch policy is used, the handler is run
on the server thread itself. This should only be used for short-running
handlers, or entirely synchronous RPC APIs.
(4) Zero cost cross type serialization.
You can now define serialization from any type to a different "wire" type. For
example, this allows you to call an RPC function that's defined to take a
std::string while passing a StringRef argument. If a serializer from StringRef
to std::string has been defined for the channel type this will be used to
serialize the argument without having to construct a std::string instance.
This allows buffer reference types to be used as arguments to RPC calls without
requiring a copy of the buffer to be made.
llvm-svn: 286620
This is forcing to use Error::success(), which is in a wide majority
of cases a lot more readable.
Differential Revision: https://reviews.llvm.org/D26481
llvm-svn: 286561
SequenceNumberManager.
Sadly, we don't have any unittests for this class because it is
a private class. Since it seems to have a nice isolated and testable
interface, it'd be great to extract it to a detail namespace and write
unit tests for it as then we could catch issues. I'll probably pester
Lang about that or some alternative refactoring.
This was noticed by PVS-Studio.
llvm-svn: 285990
All of these existed because MSVC 2013 was unable to synthesize default
move ctors. We recently dropped support for it so all that error-prone
boilerplate can go.
No functionality change intended.
llvm-svn: 284721
It should forward to deregisterEHFramesInProcess by default, not
registerEHFramesInProcess.
No test case: I haven't come up with a good way to unit test EH frame
registration yet.
llvm-svn: 283123
class.
SerializationTraits provides serialize and deserialize methods corresponding to
the earlier functions, but also provides a name for the type. In future, this
name will be used to render function signatures as strings, which will in turn
be used to negotiate and verify API support between RPC clients and servers.
llvm-svn: 281254
This reverts commit r280016, and the followups of r280017, r280027,
r280051, r280058, and r280059.
MSVC's implementation of std::promise does not get along with
llvm::Error. It uses its promised value too much like a normal value
type.
llvm-svn: 280100
behaviors, and add a callB (blacking call) primitive.
callB is a blocking call primitive for threaded code where the RPC responses are
being processed on a separate thread. (For single threaded code callST should
continue to be used instead).
No unit test yet: Last time I commited a threaded unit test it deadlocked on
one of the s390x builders. I'll try to re-enable that test first, and add a new
test if I can sort out the deadlock issue.
llvm-svn: 280051
Optional.
For void functions the return type of a nonblocking call changes from
Expected<future<Optional<bool>>> to Expected<future<Error>>, and for functions
returning T the return type changes from Expected<future<Optional<T>>> to
Expected<future<Expected<T>>>.
Inner results need to be checked (since the RPC connection may have dropped
out before a result came back) and Error/Expected provide stronger checking
requirements. It also allows us drop the crufty 'optionalToError' function and
just collapse Errors in the single-threaded call primitives.
llvm-svn: 280016
switch to using one indirect stub manager per logical dylib rather than one per
input module.
LogicalDylib is a helper class used by the CompileOnDemandLayer to manage
symbol resolution between modules during lazy compilation. In particular, it
ensures that internal symbols resolve correctly even in the case where multiple
input modules contain the same internal symbol name (which must to be promoted
to external hidden linkage so that functions in any given module can be split
out by lazy compilation). LogicalDylib's resolution scheme (before this commit)
required one stub-manager per input module. This made recompilation of functions
(by adding a module containing a new definition) difficult, as the stub manager
for any given symbol was bound to the module that supplied the original
definition. By using one stubs manager for the whole logical dylib symbols can
be more easily replaced, although support for doing this is not included in this
patch (it will be implemented in a follow up).
llvm-svn: 279952
ExecutionEngine::runFunction is supposed to allow execution of arbitrary
function types, but MCJIT can only reasonably support a limited subset of
main-linke function types. This patch documents this limitation, and fixes
MCJIT::runFunction to abort with a meaningful error at runtime if called with
an unsupported function type.
llvm-svn: 278348
It breaks ExecutionEngine/OrcLazy/weak-function.ll on most bots.
Script:
--
...
--
Exit Code: 1
Command Output (stderr):
--
Could not find main function.
llvm-svn: 277907
This adds partial support for weak functions to the CompileOnDemandLayer by
modifying the addLogicalModule method to check for existing stub definitions
before building a new stub for a weak function. This scheme is sufficient to
support ODR definitions, but fails for general weak definitions if strong
definition is encountered after the first weak definition. (A more extensive
refactor will be required to fully support weak symbols).
This patch does *not* add weak symbol support to RuntimeDyld: I hope to add
that in the near future.
llvm-svn: 277896
This prevents handles from being invalidated (through iterator invalidation)
when new modules are added.
No test-case yet: This bug was uncovered during work on an upcoming patch for
weak symbol support and the testcase for that feature will implicitly test for
correct behavior here.
llvm-svn: 277847
Common symbol support in ORC was broken in r270716 when the symbol resolution
rules in RuntimeDyld were changed. With the switch to lazily materialized
symbols in r277386, common symbols can be supported by having
RuntimeDyld::emitCommonSymbols search for (but not materialize!) definitions
elsewhere in the logical dylib.
This patch adds the 'Common' flag to JITSymbolFlags, and the necessary check
to RuntimeDyld::emitCommonSymbols.
llvm-svn: 277397
This patch replaces RuntimeDyld::SymbolInfo with JITSymbol: A symbol class
that is capable of lazy materialization (i.e. the symbol definition needn't be
emitted until the address is requested). This can be used to support common
and weak symbols in the JIT (though this is not implemented in this patch).
For consistency, RuntimeDyld::SymbolResolver is renamed to JITSymbolResolver.
For space efficiency a new class, JITEvaluatedSymbol, is introduced that
behaves like the old RuntimeDyld::SymbolInfo - i.e. it is just a pair of an
address and symbol flags. Instances of JITEvaluatedSymbol can be used in
symbol-tables to avoid paying the space cost of the materializer.
llvm-svn: 277386
This makes it possible to implement re-optimization on top of the
CompileOnDemandLayer.
Test case to come in a future patch: This will need an execution test, and
execution tests require a full working stack. The best option is to plumb this
API up to the C Bindings stack and add a C bindings test for this.
Patch by Sean Ogden. Thanks Sean!
llvm-svn: 277257
This allows ErrorAsOutParameter to work better with "optional" errors. For
example, consider a function where for certain input values it is known that
the function can't fail. This can now be written as:
Result foo(Arg X, Error *Err) {
ErrorAsOutParameter EAO(Err);
if (<Error Condition>) {
if (Err)
*Err = <report error>;
else
llvm_unreachable("Unexpected failure!");
}
}
Rather than having to construct an ErrorAsOutParameter under every conditional
where Err is known to be non-null.
llvm-svn: 276430
This is a convenience iterator that allows clients to enumerate the
GlobalObjects within a Module.
Also start using it in a few places where it is obviously the right thing
to use.
Differential Revision: http://reviews.llvm.org/D21580
llvm-svn: 273470