1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00
Commit Graph

568 Commits

Author SHA1 Message Date
Chandler Carruth
f70ef7ae29 [vectorize] Initial version of respecting PGO in the vectorizer: treat
cold loops as-if they were being optimized for size.

Nothing fancy here. Simply test case included. The nice thing is that we
can now incrementally build on top of this to drive other heuristics.
All of the infrastructure work is done to get the profile information
into this layer.

The remaining work necessary to make this a fully general purpose loop
unroller for very hot loops is to make it a fully general purpose loop
unroller. Things I know of but am not going to have time to benchmark
and fix in the immediate future:

1) Don't disable the entire pass when the target is lacking vector
   registers. This really doesn't make any sense any more.
2) Teach the unroller at least and the vectorizer potentially to handle
   non-if-converted loops. This is trivial for the unroller but hard for
   the vectorizer.
3) Compute the relative hotness of the loop and thread that down to the
   various places that make cost tradeoffs (very likely only the
   unroller makes sense here, and then only when dealing with loops that
   are small enough for unrolling to not completely blow out the LSD).

I'm still dubious how useful hotness information will be. So far, my
experiments show that if we can get the correct logic for determining
when unrolling actually helps performance, the code size impact is
completely unimportant and we can unroll in all cases. But at least
we'll no longer burn code size on cold code.

One somewhat unrelated idea that I've had forever but not had time to
implement: mark all functions which are only reachable via the global
constructors rigging in the module as optsize. This would also decrease
the impact of any more aggressive heuristics here on code size.

llvm-svn: 200219
2014-01-27 13:11:50 +00:00
Chandler Carruth
88d92716dd [vectorizer] Add an override for the target instruction cost and use it
to stabilize a test that really is trying to test generic behavior and
not a specific target's behavior.

llvm-svn: 200215
2014-01-27 11:41:50 +00:00
Chandler Carruth
eb82628ff7 [vectorizer] Simplify code to use existing helpers on the Function
object and fewer pointless variables.

Also, add a clarifying comment and a FIXME because the code which
disables *all* vectorization if we can't use implicit floating point
instructions just makes no sense at all.

llvm-svn: 200214
2014-01-27 11:27:37 +00:00
Chandler Carruth
d1ecfe35ae [vectorizer] Teach the loop vectorizer's unroller to only unroll by
powers of two. This is essentially always the correct thing given the
impact on alignment, scaling factors that can be used in addressing
modes, etc. Also, fix the management of the unroll vs. small loop cost
to more accurately model things with this world.

Enhance a test case to actually exercise more of the unroll machinery if
using synthetic constants rather than a specific target model. Before
this change, with the added flags this test will unroll 3 times instead
of either 2 or 4 (the two sensible answers).

While I don't expect this to make a huge difference, if there are lots
of loops sitting right on the edge of hitting the 'small unroll' factor,
they might change behavior. However, I've benchmarked moving the small
loop cost up and down in many various ways and by a huge factor (2x)
without seeing more than 0.2% code size growth. Small adjustments such
as the series that led up here have led to about 1% improvement on some
benchmarks, but it is very close to the noise floor so I mostly checked
that nothing regressed. Let me know if you see bad behavior on other
targets but I don't expect this to be a sufficiently dramatic change to
trigger anything.

llvm-svn: 200213
2014-01-27 11:12:24 +00:00
Chandler Carruth
bdbe34a1a1 [vectorizer] Add some flags which are useful for conducting experiments
with the unrolling behavior in the loop vectorizer. No functionality
changed at this point.

These are a bit hack-y, but talking with Hal, there doesn't seem to be
a cleaner way to easily experiment with different thresholds here and he
was also interested in them so I wanted to commit them. Suggestions for
improvement are very welcome here.

llvm-svn: 200212
2014-01-27 11:12:19 +00:00
Chandler Carruth
dd6cf9494b [vectorizer] Fix a trivial oversight where we always requested the
number of vector registers rather than toggling between vector and
scalar register number based on VF. I don't have a test case as
I spotted this by inspection and on X86 it only makes a difference if
your target is lacking SSE and thus has *no* vector registers.

If someone wants to add a test case for this for ARM or somewhere else
where this is more significant, that would be awesome.

Also made the variable name a bit more sensible while I'm here.

llvm-svn: 200211
2014-01-27 11:12:14 +00:00
Chandler Carruth
a89deb11ba [vectorizer] Clean up the handling of unvectorized loop unrolling in the
LoopVectorize pass.

The logic here doesn't make much sense. We *only* unrolled if the
unvectorized loop was a reduction loop with a single basic block *and*
small loop body. The reduction part in particular doesn't make much
sense. Instead, if we just fall through to the vectorized unroll logic
it makes more sense of unrolling if there is a vectorized reduction that
could be hacked on by the SLP vectorizer *or* if the loop is small.

This is mostly a cleanup and nothing in the test suite really exercises
this, but I did run benchmarks across this change and saw no really
significant changes.

llvm-svn: 200198
2014-01-27 08:17:58 +00:00
Chandler Carruth
4fb3e5831e [LPM] Conclude my immediate work by making the LoopVectorizer
a FunctionPass. With this change the loop vectorizer no longer is a loop
pass and can readily depend on function analyses. In particular, with
this change we no longer have to form a loop pass manager to run the
loop vectorizer which simplifies the entire pass management of LLVM.

The next step here is to teach the loop vectorizer to leverage profile
information through the profile information providing analysis passes.

llvm-svn: 200074
2014-01-25 10:01:55 +00:00
Alp Toker
1c4b33e8e5 Fix known typos
Sweep the codebase for common typos. Includes some changes to visible function
names that were misspelt.

llvm-svn: 200018
2014-01-24 17:20:08 +00:00
Arnold Schwaighofer
2c67b7dc58 LoopVectorizer: A reduction that has multiple uses of the reduction value is not
a reduction.

Really. Under certain circumstances (the use list of an instruction has to be
set up right - hence the extra pass in the test case) we would not recognize
when a value in a potential reduction cycle was used multiple times by the
reduction cycle.

Fixes PR18526.
radar://15851149

llvm-svn: 199570
2014-01-19 03:18:31 +00:00
Arnold Schwaighofer
9fb94754bd LoopVectorize: Only strip casts from integer types when replacing symbolic
strides

Fixes PR18480.

llvm-svn: 199291
2014-01-15 03:35:46 +00:00
Chandler Carruth
98adff6224 [PM] Split DominatorTree into a concrete analysis result object which
can be used by both the new pass manager and the old.

This removes it from any of the virtual mess of the pass interfaces and
lets it derive cleanly from the DominatorTreeBase<> template. In turn,
tons of boilerplate interface can be nuked and it turns into a very
straightforward extension of the base DominatorTree interface.

The old analysis pass is now a simple wrapper. The names and style of
this split should match the split between CallGraph and
CallGraphWrapperPass. All of the users of DominatorTree have been
updated to match using many of the same tricks as with CallGraph. The
goal is that the common type remains the resulting DominatorTree rather
than the pass. This will make subsequent work toward the new pass
manager significantly easier.

Also in numerous places things became cleaner because I switched from
re-running the pass (!!! mid way through some other passes run!!!) to
directly recomputing the domtree.

llvm-svn: 199104
2014-01-13 13:07:17 +00:00
Chandler Carruth
ee051af6e2 [cleanup] Move the Dominators.h and Verifier.h headers into the IR
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.

Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.

But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.

llvm-svn: 199082
2014-01-13 09:26:24 +00:00
Arnold Schwaighofer
15e9d90974 LoopVectorizer: Enable strided memory accesses versioning per default
I saw no compile or execution time regressions on x86_64 -mavx -O3.

radar://13075509

llvm-svn: 199015
2014-01-11 20:40:34 +00:00
NAKAMURA Takumi
fbff75f61d LoopVectorize.cpp: Appease MSC16.
Excuse me, I hope msc16 builders would be fine till its end day.
Introduce nullptr then. ;)

llvm-svn: 199001
2014-01-11 09:59:27 +00:00
Arnold Schwaighofer
702d83d3d8 LoopVectorizer: Handle strided memory accesses by versioning
for (i = 0; i < N; ++i)
   A[i * Stride1] += B[i * Stride2];

We take loops like this and check that the symbolic strides 'Strided1/2' are one
and drop to the scalar loop if they are not.

This is currently disabled by default and hidden behind the flag
'enable-mem-access-versioning'.

radar://13075509

llvm-svn: 198950
2014-01-10 18:20:32 +00:00
Chandler Carruth
87f14b4eec Re-sort all of the includes with ./utils/sort_includes.py so that
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.

Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.

llvm-svn: 198685
2014-01-07 11:48:04 +00:00
Arnold Schwaighofer
e4d65aae7d LoopVectorizer: Don't if-convert constant expressions that can trap
A phi node operand or an instruction operand could be a constant expression that
can trap (division). Check that we don't vectorize such cases.

PR16729
radar://15653590

llvm-svn: 197449
2013-12-17 01:11:01 +00:00
NAKAMURA Takumi
54fa39136d Prune redundant dependencies in LLVMBuild.txt.
llvm-svn: 196988
2013-12-11 00:30:57 +00:00
NAKAMURA Takumi
b2c60b7ca7 Whitespaces.
llvm-svn: 196880
2013-12-10 05:39:12 +00:00
Jakub Staszak
11e1c882f7 Don't #include heavy Dominators.h file in LoopInfo.h. This change reduces
overall time of LLVM compilation by ~1%.

llvm-svn: 196667
2013-12-07 21:20:17 +00:00
Renato Golin
a4d4a4c44f Add #pragma vectorize enable/disable to LLVM
The intended behaviour is to force vectorization on the presence
of the flag (either turn on or off), and to continue the behaviour
as expected in its absence. Tests were added to make sure the all
cases are covered in opt. No tests were added in other tools with
the assumption that they should use the PassManagerBuilder in the
same way.

This patch also removes the outdated -late-vectorize flag, which was
on by default and not helping much.

The pragma metadata is being attached to the same place as other loop
metadata, but nothing forbids one from attaching it to a function
(to enable #pragma optimize) or basic blocks (to hint the basic-block
vectorizers), etc. The logic should be the same all around.

Patches to Clang to produce the metadata will be produced after the
initial implementation is agreed upon and committed. Patches to other
vectorizers (such as SLP and BB) will be added once we're happy with
the pass manager changes.

llvm-svn: 196537
2013-12-05 21:20:02 +00:00
Rafael Espindola
2ad993fb14 Fix non-deterministic behavior.
We use CSEBlocks to initialize a worklist:

SmallVector<BasicBlock *, 8> CSEWorkList(CSEBlocks.begin(), CSEBlocks.end());

so it must have a deterministic order.

llvm-svn: 196520
2013-12-05 18:28:01 +00:00
Arnold Schwaighofer
120880c780 SLPVectorizer: An in-tree vectorized entry cannot also be a scalar external use
We were creating external uses for scalar values in MustGather entries that also
had a ScalarToTreeEntry (they also are present in a vectorized tuple). This
meant we would keep a value 'alive' as a scalar and vectorized causing havoc.
This is not necessary because when we create a MustGather vector we explicitly
create external uses entries for the insertelement instructions of the
MustGather vector elements.

Fixes PR18129.

radar://15582184

llvm-svn: 196508
2013-12-05 15:14:40 +00:00
Alp Toker
e845f8af67 Correct word hyphenations
This patch tries to avoid unrelated changes other than fixing a few
hyphen-related ambiguities and contractions in nearby lines.

llvm-svn: 196471
2013-12-05 05:44:44 +00:00
Nadav Rotem
dc01e91cf5 PR1860 - We can't save a list of ExtractElement instructions to CSE because some of these instructions
may be removed and optimized in future iterations. Instead we save a list of basic blocks that we need to CSE.

llvm-svn: 195791
2013-11-26 22:24:25 +00:00
Arnold Schwaighofer
d0c05d2c84 LoopVectorizer: Truncate i64 trip counts of i32 phis if necessary
In signed arithmetic we could end up with an i64 trip count for an i32 phi.
Because it is signed arithmetic we know that this is only defined if the i32
does not wrap. It is therefore safe to truncate the i64 trip count to a i32
value.

Fixes PR18049.

llvm-svn: 195787
2013-11-26 22:11:23 +00:00
Nadav Rotem
643eb4c26e PR18060 - When we RAUW values with ExtractElement instructions in some cases
we generate PHI nodes with multiple entries from the same basic block but
with different values. Enabling CSE on ExtractElement instructions make sure
that all of the RAUWed instructions are the same.

llvm-svn: 195773
2013-11-26 17:29:19 +00:00
Chandler Carruth
a1094eb135 Migrate metadata information from scalar to vector instructions during
SLP vectorization. Based on the code in BBVectorizer.

Fixes PR17741.

Patch by Raul Silvera, reviewed by Hal and Nadav. Reformatted by my
driving of clang-format. =]

llvm-svn: 195528
2013-11-23 00:48:34 +00:00
Arnold Schwaighofer
3fa9376236 SLPVectorizer: Fix whitespace errors.
llvm-svn: 195468
2013-11-22 15:47:17 +00:00
Yi Jiang
74286d427a SLP Vectorizer: Extract cost will only be added once even if the scalar has multiple external uses.
llvm-svn: 195406
2013-11-22 01:57:02 +00:00
Arnold Schwaighofer
242935ec8c SLPVectorizer: Fix stale for Value pointer array
We are slicing an array of Value pointers and process those slices in a loop.
The problem is that we might invalidate a later slice by vectorizing a former
slice.

Use a WeakVH to track the pointer. If the pointer is deleted or RAUW'ed we can
tell.

The test case will only fail when running with libgmalloc.

radar://15498655

llvm-svn: 195162
2013-11-19 22:20:20 +00:00
Arnold Schwaighofer
3149313505 SLPVectorizer: Fix whitespace errors
llvm-svn: 195161
2013-11-19 22:20:18 +00:00
Arnold Schwaighofer
e4280ec4dd LoopVectorizer: Extend the induction variable to a larger type
In some case the loop exit count computation can overflow. Extend the type to
prevent most of those cases.

The problem is loops like:
int main ()
{
  int a = 1;
  char b = 0;
  lbl:
    a &= 4;
    b--;
    if (b) goto lbl;
  return a;
}

The backedge count is 255. The induction variable type is i8. If we add one to
255 to get the exit count we overflow to zero.

To work around this issue we extend the type of the induction variable to i32 in
the case of i8 and i16.

PR17532

llvm-svn: 195008
2013-11-18 13:14:32 +00:00
Arnold Schwaighofer
01b6f1cc9a LoopVectorizer: Use abi alignment for accesses with no alignment
When we vectorize a scalar access with no alignment specified, we have to set
the target's abi alignment of the scalar access on the vectorized access.
Using the same alignment of zero would be wrong because most targets will have a
bigger abi alignment for vector types.

This probably fixes PR17878.

llvm-svn: 194876
2013-11-15 23:09:33 +00:00
Renato Golin
ed3b88828a Move debug message in vectorizer
No functional change, just better reporting.

llvm-svn: 194388
2013-11-11 16:27:35 +00:00
Benjamin Kramer
9eaaead296 SLPVectorizer: Use properlyDominates to satisfy the irreflexivity of a strict weak ordering.
STL debug mode checks this.

llvm-svn: 194015
2013-11-04 21:34:55 +00:00
Benjamin Kramer
15ebc47438 SLPVectorizer: Add a missing pair of parens. No functionality change.
llvm-svn: 193958
2013-11-03 12:54:32 +00:00
Benjamin Kramer
f45bcf5480 SLPVectorizer: When CSEing generated gathers only scan blocks containing them.
Instead of doing a RPO traversal of the whole function remember the blocks
containing gathers (typically <= 2) and scan them in dominator-first order.

The actual CSE is still quadratic, but I'm not confident that adding a
scoped hash table here is worth it as we're only looking at the generated
instructions and not arbitrary code.

llvm-svn: 193956
2013-11-03 12:27:52 +00:00
Benjamin Kramer
ae919396b6 SLPVectorizer: Remove duplicated function.
llvm-svn: 193927
2013-11-02 14:46:27 +00:00
Benjamin Kramer
abc7baa1dc LoopVectorize: Remove quadratic behavior the local CSE.
Doing this with a hash map doesn't change behavior and avoids calling
isIdenticalTo O(n^2) times. This should probably eventually move into a utility
class shared with EarlyCSE and the limited CSE in the SLPVectorizer.

llvm-svn: 193926
2013-11-02 13:39:00 +00:00
Arnold Schwaighofer
fed0c4f8e8 LoopVectorizer: Move cse code into its own function
llvm-svn: 193895
2013-11-01 23:28:54 +00:00
Arnold Schwaighofer
fba1c74b67 LoopVectorizer: Perform redundancy elimination on induction variables
When the loop vectorizer was part of the SCC inliner pass manager gvn would
run after the loop vectorizer followed by instcombine. This way redundancy
(multiple uses) were removed and instcombine could perform scalarization on the
induction variables. Having moved the loop vectorizer to later we no longer run
any form of redundancy elimination before we perform instcombine. This caused
vectorized induction variables to survive that did not before.

On a recent iMac this helps linpack back from 6000Mflops to 7000Mflops.

This should also help lpbench and paq8p.

I ran a Release (without Asserts) build over the test-suite and did not see any
negative impact on compile time.

radar://15339680

llvm-svn: 193891
2013-11-01 22:18:19 +00:00
Benjamin Kramer
3045156cee LoopVectorize: Look for consecutive acces in GEPs with trailing zero indices
If we have a pointer to a single-element struct we can still build wide loads
and stores to it (if there is no padding).

llvm-svn: 193860
2013-11-01 14:09:50 +00:00
Arnold Schwaighofer
5d7be45165 LoopVectorizer: If dependency checks fail try runtime checks
When a dependence check fails we can still try to vectorize loops with runtime
array bounds checks.

This helps linpack to vectorize a loop in dgefa. And we are back to 2x of the
scalar performance on a corei7-avx.

radar://15339680

llvm-svn: 193853
2013-11-01 03:05:07 +00:00
Arnold Schwaighofer
fe8e481ef6 LoopVectorizer: Clear all member data structures in RuntimeCheck.reset()
Clear all data structures when resetting the RuntimeCheck data structure.

No test case. This was exposed by an upcomming change.

llvm-svn: 193852
2013-11-01 03:05:04 +00:00
Arnold Schwaighofer
fe80e563da ARM cost model: Account for zero cost scalar SROA instructions
By vectorizing a series of srl, or, ... instructions we have obfuscated the
intention so much that the backend does not know how to fold this code away.

radar://15336950

llvm-svn: 193573
2013-10-29 01:33:53 +00:00
Arnold Schwaighofer
6f22639253 SLPVectorizer: Use vector type for vectorized memory operations
No test case, because with the current cost model we don't see a difference.
An upcoming ARM memory cost model change will expose and test this bug.

radar://15332579

llvm-svn: 193572
2013-10-29 01:33:50 +00:00
Wan Xiaofei
f3100f24fa Quick look-up for block in loop.
This patch implements quick look-up for block in loop by maintaining a hash set for blocks.
It improves the efficiency of loop analysis a lot, the biggest improvement could be 5-6%(458.sjeng).
Below are the compilation time for our benchmark in llc before & after the patch.

Benchmark	llc - trunk		llc - patched	
401.bzip2	0.339081	100.00%	0.329657	102.86%
403.gcc		19.853966	100.00%	19.605466	101.27%
429.mcf		0.049823	100.00%	0.048451	102.83%
433.milc	0.514898	100.00%	0.510217	100.92%
444.namd	1.109328	100.00%	1.103481	100.53%
445.gobmk	4.988028	100.00%	4.929114	101.20%
456.hmmer	0.843871	100.00%	0.825865	102.18%
458.sjeng	0.754238	100.00%	0.714095	105.62%
464.h264ref	2.9668		100.00%	2.90612		102.09%
471.omnetpp	4.556533	100.00%	4.511886	100.99%
bitmnp01	0.038168	100.00%	0.0357		106.91%
idctrn01	0.037745	100.00%	0.037332	101.11%
libquake2	3.78689		100.00%	3.76209		100.66%
libquake_	2.251525	100.00%	2.234104	100.78%
linpack		0.033159	100.00%	0.032788	101.13%
matrix01	0.045319	100.00%	0.043497	104.19%
nbench		0.333161	100.00%	0.329799	101.02%
tblook01	0.017863	100.00%	0.017666	101.12%
ttsprk01	0.054337	100.00%	0.053057	102.41%

Reviewer	: Andrew Trick <atrick@apple.com>, Hal Finkel <hfinkel@anl.gov>
Approver	: Andrew Trick <atrick@apple.com>
Test		: Pass make check-all & llvm test-suite

llvm-svn: 193460
2013-10-26 03:08:02 +00:00
Hal Finkel
d554c99b37 LoopVectorizer: Don't attempt to vectorize extractelement instructions
The loop vectorizer does not currently understand how to vectorize
extractelement instructions. The existing check, which excluded all
vector-valued instructions, did not catch extractelement instructions because
it checked only the return value. As a result, vectorization would proceed,
producing illegal instructions like this:

  %58 = extractelement <2 x i32> %15, i32 0
  %59 = extractelement i32 %58, i32 0

where the second extractelement is illegal because its first operand is not a vector.

llvm-svn: 193434
2013-10-25 20:40:15 +00:00
Renato Golin
ae79e04f36 Mark vector loops as already vectorized
Make sure we mark all loops (scalar and vector) when vectorizing,
so that we don't try to vectorize them anymore. Also, set unroll
to 1, since this is what we check for on early exit.

llvm-svn: 193349
2013-10-24 14:50:51 +00:00
Matt Arsenault
fcca6dd732 Use more type helper functions
llvm-svn: 193109
2013-10-21 19:43:56 +00:00
Arnold Schwaighofer
789187ee86 SLPVectorizer: Don't vectorize volatile memory operations
radar://15231682

Reapply r192799,
  http://lab.llvm.org:8011/builders/lldb-x86_64-debian-clang/builds/8226
showed that the bot is still broken even with this out.

llvm-svn: 192820
2013-10-16 17:52:40 +00:00
Arnold Schwaighofer
7097263371 Revert "SLPVectorizer: Don't vectorize volatile memory operations"
This speculatively reverts commit 192799. It might have broken a linux buildbot.

llvm-svn: 192816
2013-10-16 17:19:40 +00:00
Arnold Schwaighofer
eebda9d6cf SLPVectorizer: Don't vectorize volatile memory operations
radar://15231682

llvm-svn: 192799
2013-10-16 16:09:00 +00:00
Benjamin Kramer
a00487e169 LoopVectorize: Properly reflect PODness in comments.
llvm-svn: 192717
2013-10-15 16:19:54 +00:00
Arnold Schwaighofer
38ec37faba SLPVectorizer: Sort PHINodes based on their opcode
Before this patch we relied on the order of phi nodes when we looked for phi
nodes of the same type. This could prevent vectorization of cases where there
was a phi node of a second type in between phi nodes of some type.

This is important for vectorization of an internal graphics kernel. On the test
suite + external on x86_64 (and on a run on armv7s) it showed no impact on
either performance or compile time.

radar://15024459

llvm-svn: 192537
2013-10-12 18:56:27 +00:00
Tobias Grosser
bc154d94d0 LoopVectorize: Add missing INITIALIZE_PASS_DEPENDENCY macros
Contributed-by:  Peter Zotov  <whitequark@whitequark.org>
llvm-svn: 192536
2013-10-12 18:29:15 +00:00
Renato Golin
ec7fe56cfa Better info when debugging vectorizer
llvm-svn: 192460
2013-10-11 16:14:39 +00:00
Arnold Schwaighofer
bfe48b104a LoopVectorize: External uses must use the last value in a reduction cycle
Otherwise, we don't perform operations that would have been performed on
the scalar version.

Fixes PR17498.

llvm-svn: 192133
2013-10-07 21:05:43 +00:00
Arnold Schwaighofer
6fab174840 SLPVectorizer: Sort inputs to commutative binary operations
Sort the operands of the other entries in the current vectorization root
according to the first entry's operands opcodes.

%conv0 = uitofp ...
%load0 = load float ...

= fmul %conv0, %load0
= fmul %load0, %conv1
= fmul %load0, %conv2

Make sure that we recursively vectorize <%conv0, %conv1, %conv2> and <%load0,
%load0, %load0>.

This makes it more likely to obtain vectorizable trees. We have to be careful
when we sort that we don't destroy 'good' existing ordering implied by source
order.

radar://15080067

llvm-svn: 191977
2013-10-04 20:39:16 +00:00
Matt Arsenault
2c180f66a9 Don't use runtime bounds check between address spaces.
Don't vectorize with a runtime check if it requires a
comparison between pointers with different address spaces.
The values can't be assumed to be directly comparable.
Previously it would create an illegal bitcast.

llvm-svn: 191862
2013-10-02 22:38:17 +00:00
Yi Jiang
09195de8f3 Apply slp vectorization on fully-vectorizable tree of height 2
llvm-svn: 191852
2013-10-02 20:20:39 +00:00
Matt Arsenault
15633246b6 Fix debug printing spacing.
Fix missing newlines, missing and extra spaces in printed messages.

llvm-svn: 191851
2013-10-02 20:04:29 +00:00
Matt Arsenault
26cc78f548 Fix comment grammar and capitalization.
llvm-svn: 191850
2013-10-02 20:04:26 +00:00
Benjamin Kramer
4458ae839d SLPVectorizer: Make store chain finding more aggressive with GetUnderlyingObject.
This recursively strips all GEPs like the existing code. It also handles bitcasts and
other operations that do not change the pointer value.

llvm-svn: 191847
2013-10-02 19:06:06 +00:00
Rafael Espindola
a279462828 Remove several unused variables.
Patch by Alp Toker.

llvm-svn: 191757
2013-10-01 13:32:03 +00:00
Matt Arsenault
a3e171a6c8 Fix code duplication
llvm-svn: 191716
2013-10-01 00:01:14 +00:00
Benjamin Kramer
7b5eaaacfd Convert manual insert point restores to the new RAII object.
llvm-svn: 191675
2013-09-30 15:40:17 +00:00
Benjamin Kramer
33abdcddb3 IRBuilder: Add RAII objects to reset insertion points or fast math flags.
Inspired by the object from the SLPVectorizer. This found a minor bug in the
debug loc restoration in the vectorizer where the location of a following
instruction was attached instead of the location from the original instruction.

llvm-svn: 191673
2013-09-30 15:39:48 +00:00
Robert Wilhelm
198f21deb3 Even more spelling fixes for "instruction".
llvm-svn: 191611
2013-09-28 13:42:22 +00:00
Robert Wilhelm
6b36431ffa Fix spelling intruction -> instruction.
llvm-svn: 191610
2013-09-28 11:46:15 +00:00
Matt Arsenault
0dc0668061 Fix SLPVectorizer using wrong address space for load/store
llvm-svn: 191564
2013-09-27 21:24:57 +00:00
Justin Bogner
db7f32982e Transforms: Use getFirstNonPHI to set the insertion point for PHIs
We were previously using getFirstInsertionPt to insert PHI
instructions when vectorizing, but getFirstInsertionPt also skips past
landingpads, causing this to generate invalid IR.

We can avoid this issue by using getFirstNonPHI instead.

llvm-svn: 191526
2013-09-27 15:30:25 +00:00
Arnold Schwaighofer
9830391a8f SLPVectorize: Put horizontal reductions feeding a store under separate flag
Put them under a separate flag for experimentation. They are more likely to
interfere with loop vectorization which happens later in the pass pipeline.

llvm-svn: 191371
2013-09-25 14:02:32 +00:00
Yi Jiang
6ba7a7b02c set the cost of tiny trees to INT_MAX in SLP vectorizer to disable vectorization on them
llvm-svn: 191314
2013-09-24 17:26:43 +00:00
Arnold Schwaighofer
b1cea2cfcc Revert "LoopVectorizer: Only allow vectorization of intrinsics."
Revert 191122 - with extra checks we are allowed to vectorize math library
function calls.

Standard library indentifiers are reserved names so functions with external
linkage must not overrided them. However, functions with internal linkage can.

Therefore, we can vectorize calls to math library functions with a check for
external linkage and matching signature. This matches what we do during
SelectionDAG building.

llvm-svn: 191206
2013-09-23 14:54:39 +00:00
Arnold Schwaighofer
4f8b0cf48b SLPVectorizer: Fix multiline comment warning
llvm-svn: 191135
2013-09-21 05:37:30 +00:00
Arnold Schwaighofer
c1f8473eb6 Reapply "SLPVectorizer: Handle more horizontal reductions (disabled)""
Reapply r191108 with a fix for a memory corruption error I introduced.  Of
course, we can't reference the scalars that we replace by vectorizing and then
call their eraseFromParent method. I only 'needed' the scalars to get the
DebugLoc. Just store the DebugLoc before actually vectorizing instead. As a nice
side effect, this also simplifies the interface between BoUpSLP and the
HorizontalReduction class to returning a value pointer (the vectorized tree
root).

radar://14607682

llvm-svn: 191123
2013-09-21 01:06:00 +00:00
Nadav Rotem
a10aa3ffa1 LoopVectorizer: Only allow vectorization of intrinsics. We can't know for sure that the functions 'abs' or 'round' are the functions from libm.
rdar://15012650

llvm-svn: 191122
2013-09-21 00:27:05 +00:00
Arnold Schwaighofer
c81e140238 Revert "SLPVectorizer: Handle more horizontal reductions (disabled)"
This reverts commit r191108.

The horizontal.ll test case fails under libgmalloc. Thanks Shuxin for pointing
this out to me.

llvm-svn: 191121
2013-09-21 00:06:20 +00:00
Arnold Schwaighofer
db78859615 SLPVectorizer: Handle more horizontal reductions (disabled)
Match reductions starting at binary operation feeding into a phi. The code
handles trees like

 r += v1 + v2 + v3 ...

and

 r += v1
 r += v2
 ...

and

 r *= v1 + v2 + ...

We currently only handle associative operations (add, fadd fast).

The code can now also handle reductions feeding into stores.

 a[i] = v1 + v2 + v3 + ...

The code is currently disabled behind the flag "-slp-vectorize-hor".  The cost
model for most architectures is not there yet.

I found one opportunity of a horizontal reduction feeding a phi in TSVC
(LoopRerolling-flt) and there are several opportunities where reductions feed
into stores.

radar://14607682

llvm-svn: 191108
2013-09-20 21:18:20 +00:00
Robert Lytton
b41e4ff222 Prevent LoopVectorizer and SLPVectorizer running if the target has no vector registers.
XCore target: Add XCoreTargetTransformInfo
This is where getNumberOfRegisters() resides, which in turn returns the
number of vector registers (=0).

llvm-svn: 190936
2013-09-18 12:43:35 +00:00
Craig Topper
194d1e2a5a Revert accidental commit I had to make to get the test case in PR17268 to still work correctly.
llvm-svn: 190917
2013-09-18 04:10:17 +00:00
Craig Topper
5d022196de Lift alignment restrictions for load/store folding on VINSERTF128/VEXTRACTF128. Fixes PR17268.
llvm-svn: 190916
2013-09-18 03:55:53 +00:00
Arnold Schwaighofer
43c2040076 SLPVectorizer: Don't vectorize phi nodes that use invoke values
We can't insert an insertelement after an invoke. We would have to split a
critical edge. So when we see a phi node that uses an invoke we just give up.

radar://14990770

llvm-svn: 190871
2013-09-17 17:03:29 +00:00
Arnold Schwaighofer
11f318e34c Don't vectorize if there are outside loop users of the induction variable.
We would have to compute the pre increment value, either by computing it on
every loop iteration or by splitting the edge out of the loop and inserting a
computation for it there.

For now, just give up vectorizing such loops.

Fixes PR17179.

llvm-svn: 190790
2013-09-16 16:17:24 +00:00
Eli Friedman
e87f8feb58 Don't assert on invalid loop vectorization hint.
llvm-svn: 190450
2013-09-10 23:45:25 +00:00
Benjamin Kramer
06ad7ff792 LoopVectorize: PHI nodes are always at the beginning of a block, no need to scan the whole block.
llvm-svn: 190422
2013-09-10 18:46:15 +00:00
Yi Jiang
e1b34bf1fe In this patch we are trying to do two things:
1) If the width of vectorization list candidate is bigger than vector reg width, we will break it down to fit the vector reg.
2) We do not vectorize the width which is not power of two.

The performance result shows it will help some spec benchmarks. mesa improved 6.97% and ammp improved 1.54%. 

llvm-svn: 189830
2013-09-03 17:26:04 +00:00
Hal Finkel
a22a21165f Disable unrolling in the loop vectorizer when disabled in the pass manager
When unrolling is disabled in the pass manager, the loop vectorizer should also
not unroll loops. This will allow the -fno-unroll-loops option in Clang to
behave as expected (even for vectorizable loops). The loop vectorizer's
-force-vector-unroll option will (continue to) override the pass-manager
setting (including -force-vector-unroll=0 to force use of the internal
auto-selection logic).

In order to test this, I added a flag to opt (-disable-loop-unrolling) to force
disable unrolling through opt (the analog of -fno-unroll-loops in Clang). Also,
this fixes a small bug in opt where the loop vectorizer was enabled only after
the pass manager populated the queue of passes (the global_alias.ll test needed
a slight update to the RUN line as a result of this fix).

llvm-svn: 189499
2013-08-28 18:33:10 +00:00
Nadav Rotem
c8417c3f79 Refactor 'vectorizeLoop' no functionality change.
This patch merges LoopVectorize of InnerLoopVectorizer and InnerLoopUnroller by adding checks for VF=1. This helps in erasing the Unroller code that is almost identical to the InnerLoopVectorizer code.

llvm-svn: 189391
2013-08-27 18:52:47 +00:00
Matt Arsenault
c32a5a3d46 Fix inserting instructions before last in bundle.
The builder inserts from before the insert point,
not after, so this would insert before the last
instruction in the bundle instead of after it.

I'm not sure if this can actually be a problem
with any of the current insertions.

llvm-svn: 189285
2013-08-26 23:08:37 +00:00
Nadav Rotem
7d4e24e1f4 LoopVectorize: Implement partial loop unrolling when vectorization is not profitable.
This patch enables unrolling of loops when vectorization is legal but not profitable.
We add a new class InnerLoopUnroller, that extends InnerLoopVectorizer and replaces some of the vector-specific logic with scalars.

This patch does not introduce any runtime regressions and improves the following workloads:

SingleSource/Benchmarks/Shootout/matrix -22.64%
SingleSource/Benchmarks/Shootout-C++/matrix -13.06%
External/SPEC/CINT2006/464_h264ref/464_h264ref  -3.99%
SingleSource/Benchmarks/Adobe-C++/simple_types_constant_folding -1.95%

llvm-svn: 189281
2013-08-26 22:33:26 +00:00
Yi Jiang
b951785e03 test commit. Remove blank line
llvm-svn: 189265
2013-08-26 18:57:55 +00:00
Matt Arsenault
49ebc53ae4 Fix unused variable in release build
llvm-svn: 189264
2013-08-26 18:38:29 +00:00
Matt Arsenault
0d6c559675 Constify functions
llvm-svn: 189234
2013-08-26 17:56:38 +00:00
Matt Arsenault
fe57252c78 Vectorize starting from insertelements building a vector
llvm-svn: 189233
2013-08-26 17:56:35 +00:00
Matt Arsenault
c1b8722791 Check if in set on insertion instead of separately
llvm-svn: 189179
2013-08-24 19:55:38 +00:00
Chandler Carruth
e6b6740e73 Teach the SLP vectorizer the correct way to check for consecutive access
using GEPs. Previously, it used a number of different heuristics for
analyzing the GEPs. Several of these were conservatively correct, but
failed to fall back to SCEV even when SCEV might have given a reasonable
answer. One was simply incorrect in how it was formulated.

There was good code already to recursively evaluate the constant offsets
in GEPs, look through pointer casts, etc. I gathered this into a form
code like the SLP code can use in a previous commit, which allows all of
this code to become quite simple.

There is some performance (compile time) concern here at first glance as
we're directly attempting to walk both pointers constant GEP chains.
However, a couple of thoughts:

1) The very common cases where there is a dynamic pointer, and a second
   pointer at a constant offset (usually a stride) from it, this code
   will actually not do any unnecessary work.

2) InstCombine and other passes work very hard to collapse constant
   GEPs, so it will be rare that we iterate here for a long time.

That said, if there remain performance problems here, there are some
obvious things that can improve the situation immensely. Doing
a vectorizer-pass-wide memoizer for each individual layer of pointer
values, their base values, and the constant offset is likely to be able
to completely remove redundant work and strictly limit the scaling of
the work to scrape these GEPs. Since this optimization was not done on
the prior version (which would still benefit from it), I've not done it
here. But if folks have benchmarks that slow down it should be straight
forward for them to add.

I've added a test case, but I'm not really confident of the amount of
testing done for different access patterns, strides, and pointer
manipulation.

llvm-svn: 189007
2013-08-22 12:45:17 +00:00