This allows us to add addtional instrumentation before the function start,
without splitting the first BB.
Differential Revision: https://reviews.llvm.org/D85985
Summary:
Keeping msan a function pass requires replacing the module level initialization:
That means, don't define a ctor function which calls __msan_init, instead just
declare the init function at the first access, and add that to the global ctors
list.
Changes:
- Pull the actual sanitizer and the wrapper pass apart.
- Add a newpm msan pass. The function pass inserts calls to runtime
library functions, for which it inserts declarations as necessary.
- Update tests.
Caveats:
- There is one test that I dropped, because it specifically tested the
definition of the ctor.
Reviewers: chandlerc, fedor.sergeev, leonardchan, vitalybuka
Subscribers: sdardis, nemanjai, javed.absar, hiraditya, kbarton, bollu, atanasyan, jsji
Differential Revision: https://reviews.llvm.org/D55647
llvm-svn: 350305
It turned out that MSan was incorrectly calculating the shadow for int comparisons: it was done by truncating the result of (Shadow1 OR Shadow2) to i1, effectively rendering all bits except LSB useless.
This approach doesn't work e.g. in the case where the values being compared are even (i.e. have the LSB of the shadow equal to zero).
Instead, if CreateShadowCast() has to cast a bigger int to i1, we replace the truncation with an ICMP to 0.
This patch doesn't affect the code generated for SPEC 2006 binaries, i.e. there's no performance impact.
For the test case reported in PR32842 MSan with the patch generates a slightly more efficient code:
orq %rcx, %rax
jne .LBB0_6
, instead of:
orl %ecx, %eax
testb $1, %al
jne .LBB0_6
llvm-svn: 302787