Over a year ago, MachineInstr gained a fourth boolean parameter that occurs
before the TII pointer. When this happened, several places started accidentally
passing TII into this boolean parameter instead of the TII parameter.
llvm-svn: 362312
We were hashing the string pointer, not the string, so two instructions
could be identical (isIdenticalTo), but have different hash codes.
This showed up as a very rare, non-deterministic assertion failure
rehashing a DenseMap constructed by MachineOutliner. So there's no
"real" testcase, just a unittest which checks that the hash function
behaves correctly.
I'm a little scared fixing this is going to cause a regression in
outlining or MachineCSE, but hopefully we won't run into any issues.
Differential Revision: https://reviews.llvm.org/D61975
llvm-svn: 362281
Summary:
Use KnownBits::computeForAddSub/computeForAddCarry
in SelectionDAG::computeKnownBits when doing value
tracking for addition/subtraction.
This should improve the precision of the known bits,
as we only used to make a simple estimate of known
zeroes. The KnownBits support functions are also
able to deduce bits that are known to be one in the
result.
Reviewers: spatel, RKSimon, nikic, lebedev.ri
Reviewed By: nikic
Subscribers: nikic, javed.absar, lebedev.ri, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60460
llvm-svn: 358372
Because CodeGen can't depend on GlobalISel, we need a way to encapsulate the CSE
configs that can be passed between TargetPassConfig and the targets' custom
pass configs. This CSEConfigBase allows targets to create custom CSE configs
which is then used by the GISel passes for the CSEMIRBuilder.
This support will be used in a follow up commit to allow constant-only CSE for
-O0 compiles in D60580.
llvm-svn: 358368
These arrays are both keyed by CPU name and go into the same tablegenerated file. Merge them so we only need to store keys once.
This also removes a weird space saving quirk where we used the ProcDesc.size() to create to build an ArrayRef for ProcSched.
Differential Revision: https://reviews.llvm.org/D58939
llvm-svn: 355431
Summary:
Prior to r310876 one of our out-of-tree targets was enabling IPRA by modifying
the TargetOptions::EnableIPRA. This no longer works on current trunk since the
useIPRA() hook overrides any values that are set in advance. This patch adjusts
the behaviour of the hook so that API users and useIPRA() can both enable it
but useIPRA() cannot disable it if the API user already enabled it.
Reviewers: arsenm
Reviewed By: arsenm
Subscribers: wdng, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D38043
llvm-svn: 354692
This fixes two problems with CSE done in buildConstant. First, this
would hit an assert when used with a vector result type. Solve this by
allowing CSE on the vector elements, but not on the result vector for
now.
Second, this was also performing the CSE based on the input
ConstantInt pointer. The underlying buildConstant could potentially
convert the constant depending on the result type, giving in a
different ConstantInt*. Stop allowing the APInt and ConstantInt forms
from automatically casting to the result type to avoid any similar
problems in the future.
llvm-svn: 353077
The IR enforced limit for the address space is 24-bits, but LLT was
only using 23-bits. Additionally, the argument to the constructor was
truncating to 16-bits.
A similar problem still exists for the number of vector elements. The
IR enforces no limit, so if you try to use a vector with > 65535
elements the IRTranslator asserts in the LLT constructor.
llvm-svn: 352264
As noted in https://bugs.llvm.org/show_bug.cgi?id=36651, the specialization for
isPodLike<std::pair<...>> did not match the expectation of
std::is_trivially_copyable which makes the memcpy optimization invalid.
This patch renames the llvm::isPodLike trait into llvm::is_trivially_copyable.
Unfortunately std::is_trivially_copyable is not portable across compiler / STL
versions. So a portable version is provided too.
Note that the following specialization were invalid:
std::pair<T0, T1>
llvm::Optional<T>
Tests have been added to assert that former specialization are respected by the
standard usage of llvm::is_trivially_copyable, and that when a decent version
of std::is_trivially_copyable is available, llvm::is_trivially_copyable is
compared to std::is_trivially_copyable.
As of this patch, llvm::Optional is no longer considered trivially copyable,
even if T is. This is to be fixed in a later patch, as it has impact on a
long-running bug (see r347004)
Note that GCC warns about this UB, but this got silented by https://reviews.llvm.org/D50296.
Differential Revision: https://reviews.llvm.org/D54472
llvm-svn: 351701
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
https://reviews.llvm.org/D52803
This patch adds support to continuously CSE instructions during
each of the GISel passes. It consists of a GISelCSEInfo analysis pass
that can be used by the CSEMIRBuilder.
llvm-svn: 351283
Summary:
This allows us to register it with the MachineFunction delegate and be
notified automatically about erasure and creation of instructions. However,
we still need explicit notification for modifications such as those caused
by setReg() or replaceRegWith().
There is a catch with this though. The notification for creation is
delivered before any operands can be added. While appropriate for
scheduling combiner work. This is unfortunate for debug output since an
opcode by itself doesn't provide sufficient information on what happened.
As a result, the work list remembers the instructions (when debug output is
requested) and emits a more complete dump later.
Another nit is that the MachineFunction::Delegate provides const pointers
which is inconvenient since we want to use it to schedule future
modification. To resolve this GISelWorkList now has an optional pointer to
the MachineFunction which describes the scope of the work it is permitted
to schedule. If a given MachineInstr* is in this function then it is
permitted to schedule work to be performed on the MachineInstr's. An
alternative to this would be to remove the const from the
MachineFunction::Delegate interface, however delegates are not permitted
to modify the MachineInstr's they receive.
In addition to this, the observer has three interface changes.
* erasedInstr() is now erasingInstr() to indicate it is about to be erased
but still exists at the moment.
* changingInstr() and changedInstr() have been added to report changes
before and after they are made. This allows us to trace the changes
in the debug output.
* As a convenience changingAllUsesOfReg() and
finishedChangingAllUsesOfReg() will report changingInstr() and
changedInstr() for each use of a given register. This is primarily useful
for changes caused by MachineRegisterInfo::replaceRegWith()
With this in place, both combine rules have been updated to report their
changes to the observer.
Finally, make some cosmetic changes to the debug output and make Combiner
and CombinerHelp
Reviewers: aditya_nandakumar, bogner, volkan, rtereshin, javed.absar
Reviewed By: aditya_nandakumar
Subscribers: mgorny, rovka, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D52947
llvm-svn: 349167
Summary:
In addition to knowing that an instruction is changed. It's also useful to
know when it's about to change. For example, it might print the instruction so
you can track the changes in a debug log, it might remove it from some queue
while it's being worked on, or it might want to change several instructions as
a single transaction and act on all the changes at once.
Added changingInstr() to all existing uses of changedInstr()
Reviewers: aditya_nandakumar
Reviewed By: aditya_nandakumar
Subscribers: rovka, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D55623
llvm-svn: 348992
Summary:
There's little of interest that can be done to an already-erased instruction.
You can't inspect it, write it to a debug log, etc. It ought to be notification
that we're about to erase it. Rename the function to clarify the timing of the
event and reflect current usage.
Also fixed one case where we were trying to print an erased instruction.
Reviewers: aditya_nandakumar
Reviewed By: aditya_nandakumar
Subscribers: rovka, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D55611
llvm-svn: 348976
https://reviews.llvm.org/D55294
Previously MachineIRBuilder::buildInstr used to accept variadic
arguments for sources (which were either unsigned or
MachineInstrBuilder). While this worked well in common cases, it doesn't
allow us to build instructions that have multiple destinations.
Additionally passing in other optional parameters in the end (such as
flags) is not possible trivially. Also a trivial call such as
B.buildInstr(Opc, Reg1, Reg2, Reg3)
can be interpreted differently based on the opcode (2defs + 1 src for
unmerge vs 1 def + 2srcs).
This patch refactors the buildInstr to
buildInstr(Opc, ArrayRef<DstOps>, ArrayRef<SrcOps>)
where DstOps and SrcOps are typed unions that know how to add itself to
MachineInstrBuilder.
After this patch, most invocations would look like
B.buildInstr(Opc, {s32, DstReg}, {SrcRegs..., SrcMIBs..});
Now all the other calls (such as buildAdd, buildSub etc) forward to
buildInstr. It also makes it possible to build instructions with
multiple defs.
Additionally in a subsequent patch, we should make it possible to add
flags directly while building instructions.
Additionally, the main buildInstr method is now virtual and other
builders now only have to override buildInstr (for say constant
folding/cseing) is straightforward.
Also attached here (https://reviews.llvm.org/F7675680) is a clang-tidy
patch that should upgrade the API calls if necessary.
llvm-svn: 348815
https://reviews.llvm.org/D54980
This provides a standard API across GISel passes to observe and notify
passes about changes (insertions/deletions/mutations) to MachineInstrs.
This patch also removes the recordInsertion method in MachineIRBuilder
and instead provides method to setObserver.
Reviewed by: vkeles.
llvm-svn: 348406
We can now select CLZ via the TableGen'erated code, so support G_CTLZ
and G_CTLZ_ZERO_UNDEF throughout the pipeline for types <= s32.
Legalizer:
If the CLZ instruction is available, use it for both G_CTLZ and
G_CTLZ_ZERO_UNDEF. Otherwise, use a libcall for G_CTLZ_ZERO_UNDEF and
lower G_CTLZ in terms of it.
In order to achieve this we need to add support to the LegalizerHelper
for the legalization of G_CTLZ_ZERO_UNDEF for s32 as a libcall (__clzsi2).
We also need to allow lowering of G_CTLZ in terms of G_CTLZ_ZERO_UNDEF
if that is supported as a libcall, as opposed to just if it is Legal or
Custom. Due to a minor refactoring of the helper function in charge of
this, we will also allow the same behaviour for G_CTTZ and G_CTPOP.
This is not going to be a problem in practice since we don't yet have
support for treating G_CTTZ and G_CTPOP as libcalls (not even in
DAGISel).
Reg bank select:
Map G_CTLZ to GPR. G_CTLZ_ZERO_UNDEF should not make it to this point.
Instruction select:
Nothing to do.
llvm-svn: 347545
This will hold flags specific to subprograms. In the future
we could potentially free up scarce bits in DIFlags by moving
subprogram-specific flags from there to the new flags word.
This patch does not change IR/bitcode formats, that will be
done in a follow-up.
Differential Revision: https://reviews.llvm.org/D54597
llvm-svn: 347239
MachineModuleInfo can only be used in code using lib/CodeGen, hence we
can keep a more specific reference to LLVMTargetMachine rather than just
TargetMachine around.
llvm-svn: 346182
These methods were just wrappers around getNode with additional asserts (identical and repeated 3 times). But getNode already has a switch that can be used to hold these asserts that allows them to be shared for all 3 opcodes. This also enables checking on the places that create these nodes without using the wrappers.
The rest of the patch is just changing all callers to use getNode directly.
llvm-svn: 346087